-
Sweet Willis posted an update 2 weeks, 5 days ago
Gene Ontology (GO) analysis showed that these N-glycoproteins were involved in various biological processes, cellular components and molecular functions. These N-glycoproteins participate in biological processes, such as metabolic processes, cellular processes and single-organism processes. These N-glycoproteins are also cellular components in biological process cells, membranes and organelles and have different molecular functions, such as catalytic activity and binding. Notably, these N-glycoproteins were enriched in starch and sucrose metabolism and galactose metabolism by KEGG pathway analysis. This community resource regarding N-glycoproteins is the first large-scale N-glycoproteome during plant fruit ripening. This study will contribute to understanding the function of N-glycosylation in regulating plant fruit ripening. Anthropogenic increases in fossil fuel emissions have been a primary driver of increased concentrations of atmospheric carbon dioxide ([CO2]) and other greenhouse gases resulting in warmer temperatures, alterations in precipitation patterns, and increased occurrence of extreme weather events in terrestrial areas across the globe. In agricultural growing regions, alterations in climate can challenge plant productivity in ways that impact the ability of the world to sustain adequate food production for a growing and increasingly affluent population with shifting access to affordable and nutritious food. While the knowledge gap that exists regarding potential climate change impacts is large across agriculture, it is especially large in specialty cropping systems. This includes fruit and vegetable crops, and perennial cropping systems which also contribute (along with row crops) to our global diet. In order to obtain a comprehensive view of the true impact of climate change on our global food supply, we must expand our narrow focus from improving yield and plant productivity to include the impact of climate change on the nutritional value of these crops. In order to address these questions, we need a multi-faceted approach that integrates physiology and genomics tools and conducts comprehensive experiments under realistic depictions of future projected climate. This review describes gaps in our knowledge in relation to these responses, and future questions and actions that are needed to develop a sustainable future food supply in light of global climate change. In Brassica napus, pod number and pod density are critical factors to determine seed yield. Although the pod density is an essential yield trait, the regulation of yield formation in oil crops, as well as the genetic and molecular mechanisms, are poorly understood. In this study, we characterized a rapeseed high-density pod mutant (dpt247) from composite hybridization. To shed some light on the nature of this mutation, it was investigated morphologically, anatomically, physiologically, genetically and transcriptomically. The mutant plant showed noticeable phenotypic differences in comparison with the control plant, including reduced plant height and primary branch length, decreased number of primary branches, significantly increased number of pod on the main inflorescence, and more compact pod distribution. Besides, the mutant had higher levels of indole-3-acetic acid (IAA) and zeatin riboside (ZR) in the shoot apical meristem (SAM). The dense pod trait was controlled by two major recessive genes identified in the segregating genetic populations of GRE501 and dpt247. RNA sequencing indicated genes participated in auxin, cytokinin and WUS/CLV signalling pathway in dpt247 were more active in the mutant. These results provide important information for understanding the regulation of yield formation and high yield breeding in rapeseed. Plants respond and adapt to changes in their environment by employing a wide variety of genetic, molecular, and biochemical mechanisms. When so doing, they trigger large-scale rearrangements at the metabolic and transcriptional levels. The dynamics and patterns of these rearrangements and how they govern a stress response is not clear. In this opinion, we discuss a plant’s response to stress from the perspective of the metabolic gene co-expression network and its rearrangement upon stress. As a case study, we use publicly available expression data of Arabidopsis thaliana plants exposed to heat and drought stress to evaluate and compare the co-expression networks of metabolic genes. The analysis highlights that stress conditions can lead to metabolic tightening and expansion of the co-expression network. We argue that this rearrangement could play a role in a plant’s response to stress and thus may be an additional tool to assess and understand stress tolerance/sensitivity. selleck products Additional studies are needed to evaluate the metabolic network in response to multiple stresses at various intensities and across different genetic backgrounds (e.g., intra- and inter-species, sensitive and tolerant eco/genotypes). Transcription factor (TF) gene clusters in plants, such as tomato, potato, petunia, tobacco, and almond, have been characterized for their roles in the biosynthesis of diverse array of specialized metabolites. In Catharanthus roseus, three AP2/ERF TFs, ORCA3, ORCA4, and ORCA5, have been shown to be present on the same genomic scaffold, forming a cluster that regulates the biosynthesis of pharmaceutically important terpenoid indole alkaloids (TIAs). Our analysis of the recently updated C. roseus genome sequence revealed that the ORCA cluster comprises two additional AP2/ERFs, the previously characterized ORCA2 and a newly identified member designated as ORCA6. Transcriptomic analysis revealed that the ORCAs are highly expressed in stems, followed by leaves, roots and flowers. Expression of ORCAs was differentially induced in response to methyl-jasmonate and ethylene treatment. In addition, ORCA6 activated the strictosidine synthase (STR) promoter in tobacco cells. Activation of the STR promoter was significantly higher when ORCA2 or ORCA6 was coexpressed with the mitogen-activated protein kinase kinase, CrMPKK1. Furthermore, transient overexpression of ORCA6 in C. roseus flower petals activated TIA pathway gene expression and TIA accumulation. The results described here advance our understanding of regulation of TIA pathway by the ORCA gene cluster and the evolution for plant ERF gene clusters.