-
Dalrymple Jennings posted an update 2 weeks, 5 days ago
Further investigations found that inhibiting AIF1 expression in bone marrow cells or monocytes impaired differentiation into functional macrophages. Collectively, results show that AIF1 is a critical regulatory component governing monocyte and macrophage immune functions and that L. donovani infection can suppress the gene as an immune evasion tactic.Virus removal filters developed for the decontamination of small viruses from biotherapeutic products are widely used in basic research and critical step for drug production due to their long-established quality and robust performance. A variety of imaging techniques have been employed to elucidate the mechanism(s) by which viruses are effectively captured by filter membranes, but they are limited to ‘static’ imaging. Here, we propose a novel method for detailed monitoring of ‘dynamic process’ of virus capture; specifically, direct examination of biomolecules during filtration under an ultra-stable optical microscope. Samples were fluorescently labeled and infused into a single hollow fiber membrane comprising cuprammonium regenerated-cellulose (Planova 20N). While proteins were able to pass through the membrane, virus-like particles (VLP) accumulated stably in a defined region of the membrane. After injecting the small amount of sample into the fiber membrane, the real-time process of trapping VLP in the membrane was quantified beyond the diffraction limit. The method presented here serves as a preliminary basis for determining optimum filtration conditions, and provides new insights into the structure of novel fiber membranes.Worldwide, improper disposal of plastics is instigating environmental initiatives to combat plastics accumulation of in the environment and the world’s oceans. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biocomposites with Miscanthus (Misc) fibres and distillers’ dried grains with solubles (DDGS) were studied to ascertain if natural fibres and proteinaceous fillers can improve polyhydroxyalkanoate marine biodegradability. Using ASTM standard D7991-15, the biodegradation of PHBV, PHBV with Misc (15 and 25 wt%) and PHBV with DDGS (15 and 25 wt%) was performed in a simulated marine environment for the first time, as indicated by a literature survey. PHBV/Misc (85/15) and (75/25) biocomposites showed 15 and 25% more biodegradation compared to PHBV, respectively. selleck inhibitor Proteinaceous PHBV/DDGS (85/15) and (75/25) biocomposites showed 17 and 40% more biodegradation compared to PHBV, respectively. Furthermore, PHBV/Misc (75/25) and PHBV/DDGS (75/25) biocomposites were marine biodegraded in 412 and 295 days, respectively. In conclusion, proteinaceous fillers (DDGS) biocomposites have better marine biodegradability than miscanthus.The whale shark (Rhincodon typus) is an endangered species with a declining global population. The South Ari Atoll Marine Protected Area (SAMPA), Maldives, is one of few locations globally where year-long residency of individuals occurs. This SAMPA aggregation appears to consist almost exclusively of immature males. Due to its year-round residency, this local aggregation is subjected to a high degree of tourism pressure. This ecotourism contributes to the high level of interest and protection offered to whale sharks by the local community. Unfortunately, if regulations are not followed or enforced, tourism can bring with it major stressors, such as accidental injuries. We used POPAN capture-mark-recapture models and lagged identification rate analysis to assess the effect of major injuries on whale shark residency within SAMPA. Injuries may be obtained outside SAMPA. We found individuals with major injuries had a higher apparent survival in the area than those without. Lagged identification rates also demonstrated that sharks with major injuries are more likely to return to the area. We suggest that major injuries result in sharks prolonging their time in the developmental habitat. These findings have implications for individual fitness and the population viability of this endangered species. We propose targeted conservation strategies be considered to protect sharks from further injury. Based on the presented spatio-temporal distributions of sharks, and current local knowledge of sighting patterns, speed limit zones and propeller-exclusion zones should be implemented and enforced. If carried out alongside tourist education, these measures will contribute to the protection of whale sharks within SAMPA and beyond. Furthermore, our results can aid research direction, alongside regulation and enforcement development, at similar sites worldwide.The major histocompatibility complex II (HLA-II) facilitates the presentation of antigen-derived peptides to CD4+ T-cells. Antigen presentation is not only affected by peptide processing and intracellular trafficking, but also by mechanisms that govern HLA-II abundance such as gene expression, biosynthesis and degradation. Herein we describe a mass spectrometry (MS) based HLA-II-protein quantification method, applied to dendritic-like cells (KG-1 and MUTZ-3) and human monocyte-derived dendritic cells (DCs). This method monitors the proteotypic peptides VEHWGLDKPLLK, VEHWGLDQPLLK and VEHWGLDEPLLK, mapping to the α-chains HLA-DQA1, -DPA1 and -DRA1/DQA2, respectively. Total HLA-II was detected at 176 and 248 fmol per million unstimulated KG-1 and MUTZ-3 cells, respectively. In contrast, TNF- and LPS-induced MUTZ-3 cells showed a 50- and 200-fold increase, respectively, of total α-chain as measured by MS. HLA-II protein levels in unstimulated DCs varied significantly between donors ranging from ~ 4 to ~ 50 pmol per million DCs. Cell surface HLA-DR levels detected by flow cytometry increased 2- to 3-fold after DC activation with lipopolysaccharide (LPS), in contrast to a decrease or no change in total HLA α-chain as determined by MS. HLA-DRA1 was detected as the predominant variant, representing > 90% of total α-chain, followed by DPA1 and DQA1 at 3-7% and ≤ 1%, respectively.To compare the performance of artificial intelligence (AI) and Radiographic Assessment of Lung Edema (RALE) scores from frontal chest radiographs (CXRs) for predicting patient outcomes and the need for mechanical ventilation in COVID-19 pneumonia. Our IRB-approved study included 1367 serial CXRs from 405 adult patients (mean age 65 ± 16 years) from two sites in the US (Site A) and South Korea (Site B). We recorded information pertaining to patient demographics (age, gender), smoking history, comorbid conditions (such as cancer, cardiovascular and other diseases), vital signs (temperature, oxygen saturation), and available laboratory data (such as WBC count and CRP). Two thoracic radiologists performed the qualitative assessment of all CXRs based on the RALE score for assessing the severity of lung involvement. All CXRs were processed with a commercial AI algorithm to obtain the percentage of the lung affected with findings related to COVID-19 (AI score). Independent t- and chi-square tests were used in addition to multiple logistic regression with Area Under the Curve (AUC) as output for predicting disease outcome and the need for mechanical ventilation.