-
Winther Watkins posted an update 2 weeks, 5 days ago
Staphylococcus aureus colonizes the skin of the majority of patients with atopic dermatitis (AD), and its presence increases disease severity. Adhesion of S. aureus to corneocytes in the stratum corneum is a key initial event in colonization, but the bacterial and host factors contributing to this process have not been defined. Here, we show that S. aureus interacts with the host protein corneodesmosin. Corneodesmosin is aberrantly displayed on the tips of villus-like projections that occur on the surface of AD corneocytes as a result of low levels of skin humectants known as natural moisturizing factor (NMF). An S. aureus mutant deficient in fibronectin binding protein B (FnBPB) and clumping factor B (ClfB) did not bind to corneodesmosin in vitro. Using surface plasmon resonance, we found that FnBPB and ClfB proteins bound with similar affinities. The S. aureus binding site was localized to the N-terminal glycine-serine-rich region of corneodesmosin. Atomic force microscopy showed that the N-terminal region was present on corneocytes containing low levels of NMF and that blocking it with an antibody inhibited binding of individual S. aureus cells to corneocytes. Finally, we found that S. aureus mutants deficient in FnBPB or ClfB have a reduced ability to adhere to low-NMF corneocytes from patients. In summary, we show that FnBPB and ClfB interact with the accessible N-terminal region of corneodesmosin on AD corneocytes, allowing S. aureus to take advantage of the aberrant display of corneodesmosin that accompanies low NMF in AD. This interaction facilitates the characteristic strong binding of S. aureus to AD corneocytes.Acetylcholine (ACh) promotes various cell migrations in vitro, but there are few investigations into this nonsynaptic role of ACh signaling in vivo. Here we investigate the function of a muscarinic receptor on an epithelial cell migration in Caenorhabditis elegans We show that the migratory gonad leader cell, the linker cell (LC), uses an M1/M3/M5-like muscarinic ACh receptor GAR-3 to receive extrasynaptic ACh signaling from cholinergic neurons for its migration. Either the loss of the GAR-3 receptor in the LC or the inhibition of ACh release from cholinergic neurons resulted in migratory path defects. The overactivation of the GAR-3 muscarinic receptor caused the LC to reverse its orientation through its downstream effectors Gαq/egl-30, PLCβ/egl-8, and TRIO/unc-73 This reversal response only occurred in the fourth larval stage, which corresponds to the developmental time when the GAR-3yellow fluorescent protein receptor in the membrane relocalizes from a uniform to an asymmetric distribution. These findings suggest a role for the GAR-3 muscarinic receptor in determining the direction of LC migration.Hexokinase (EC 2.7.1.1, Adenosine Tri Phosphate (ATP) D-hexose-6-phosphotransferase) is a crucial regulatory enzyme of the glycolytic pathway (Embden-Meyerhof pathway). Selleckchem Iruplinalkib Hexokinase deficiency is associated with chronic non-spherocytic haemolytic anaemia (HA) with some exceptional cases showing psychomotor/mental retardation and fetus death. The proband is a four-and-half-year-old female child born of a four-degree consanguineous marriage hailing from South India with autosomal recessive congenital HA associated with developmental delay. She was well till 3 months of her age post an episode of diarrhoea when she was noted to be severely anaemic and requiring regular transfusions. The common causes of HA, haemoglobinopathies, red cell membranopathies and common red cell enzymopathies (G6PD, GPI, PK and P5N) were ruled out. Targeted analysis of whole exome sequencing (WES) using an insilico gene panel for hereditary anaemia was performed to identify pathogenic variants in the patient. Next-generation sequencing revealed a novel homozygous variant in hexokinase gene c.2714C>A (p. Thr905Lys) in exon-18. The pathogenic nature of the variant p. Thr905Lys in the HK1 gene was confirmed collectively by biochemical and molecular studies. Insilico analysis (PolyPhen-2, Provean, Mutation Taster) predicted the variant to be severe disease causing. Multiple sequence alignment demonstrated the conservation of p. Thr905 across the species. The impact of the mutation on the protein structure was studied by PyMOL and Swiss Protein databank viewer.Inhibition plays important roles in modulating the neural activities of sensory and motor systems at different levels from synapses to brain regions. To achieve coordinated movement, motor systems produce alternating contractions of antagonist muscles, whether along the body axis or within and among limbs, which often involves direct or indirect cross-inhibitory pathways. In the nematode Caenorhabditis elegans, a small network involving excitatory cholinergic and inhibitory GABAergic motoneurons generates the dorsoventral alternation of body-wall muscles that supports undulatory locomotion. Inhibition has been suggested to be necessary for backward undulation because mutants that are defective in GABA transmission exhibit a shrinking phenotype in response to a harsh touch to the head, whereas wild-type animals produce a backward escape response. Here, we demonstrate that the shrinking phenotype is exhibited by wild-type as well as mutant animals in response to harsh touch to the head or tail, but only GABA transmission mutants show slow locomotion after stimulation. Impairment of GABA transmission, either genetically or optogenetically, induces lower undulation frequency and lower translocation speed during crawling and swimming in both directions. The activity patterns of GABAergic motoneurons are different during low-frequency and high-frequency undulation. During low-frequency undulation, GABAergic VD and DD motoneurons show correlated activity patterns, while during high-frequency undulation, their activity alternates. The experimental results suggest at least three non-mutually exclusive roles for inhibition that could underlie fast undulatory locomotion in C. elegans, which we tested with computational models cross-inhibition or disinhibition of body-wall muscles, or neuronal reset.
To investigate the impact of coronavirus disease 2019 lockdown on glycemic control and associated factors in people living with type 1 diabetes.
An observational evaluation from a self-reported questionnaire on behavioral changes and glycemic information from flash glucose monitoring (FGM) during the lockdown in 1,378 individuals living with type 1 diabetes who used a French dedicated nationwide web application (CoviDIAB).
The main outcome was the change of the mean glucose level 2 months before and 1 month after the lockdown. We found that mean glucose improved from 9.1 ± 1.7 mmol/L to 8.7 ± 1.7 mmol/L (
< 0.001). Factors associated with better glycemic control were a decrease of alcohol consumption (odds ratio [OR] 1.75 [95% CI 1.04-2.94]), an increase in the frequency of FGM scans (OR 1.48 [1.04-2.10]) and in the number of hypoglycemia events (OR 1.67 [1.13-2.46]), and an easier diabetes control perception (OR 1.71 [1.18-2.49]).
Our findings suggest that lockdown has a positive impact on glycemic control in people with type 1 diabetes.