-
McCall Kryger posted an update 12 hours, 40 minutes ago
Finally, this protocol was applied to 50 vegetable-based and 22 fruit-based processed baby foods (range 0 to 1179 and 504 µg/100 g, respectively), and it was concluded that this extraction procedure may be used for similar processed foods products. The procedure proved to be sensitive (LOD = 0.12 µg/mL) and reproducible (CV for baby foods 4-10%).The link between the gut microbiome and bone health has begun to attract widespread interest in recent years. The gut microbiome are vital in many diseases involving bone loss. Probiotics, prebiotics, and dietary supplements have been suggested to protect bone health by altering the composition of the gut microbiota. Notably, studying the relationship between the gut microbiome and bone health can provide a basis for the prevention and treatment of bone diseases. This review focuses on the link between the gut microbiome and bone diseases, exploring current knowledge of the mechanisms by which gut bacteria affect bone health. In addition, the influences of dietary supplements on the interactions between the gut microbiome and bone health are discussed. This knowledge will promote new ideas for gut microbiota-mediated dietary interventions in patients with bone diseases.Nutrition policies recommend limiting the intake of added sugars. Information about added sugar content is not provided on packaged foods in Brazil, and even total sugar content information is often absent. This study aimed to (i) adapt a systematic methodology for estimating added sugar content in packaged foods when information on total and added sugar contents is not mandatory on labels, (ii) apply the adapted methodology to a Brazilian food composition database to estimate the extent of added sugar content in the national food supply, and (iii) assess the validity of the adapted methodology. We developed an 8-step protocol to estimate added sugar content using information provided on food labels. These steps included objective and subjective estimation procedures. Mean, median, and quartiles of the added sugar content of 4,805 Brazilian foods were determined and presented by food categories. Validity was assessed using a US database containing values of added sugar as displayed on the product labels. Objective estimation of added sugar content could be conducted for 3,119 products (64.9%), with the remainder 1,686 (35.1%) being assessed using subjective estimation. We found that 3,093 (64.4%) foods contained added sugar ingredients and the overall estimated median added sugar content was 4.7 g (interquartile range 0-29.3) per 100 g or 100 ml. The validity testing on US data for products with known added sugar values showed excellent agreement between estimated and reported added sugar values (ICC = 0.98). This new methodology is a useful approach for estimating the added sugar content of products in countries where both added and total sugar information are not mandated on food labels. AOAhemihydrochloride The method can be used to monitor added sugar levels and support interventions aimed at limiting added sugar intake.Spoilage of chilled chicken can occur as a result of microbial development and consumption of meat nutrients by spoilage bacteria, ultimately resulting in the release of undesired metabolites. Characterizing the profiles of the microbiota and metabolites and clarifying their relationships will contribute to an improved understanding of the mechanism underlying chilled chicken spoilage. In the present study, 16S rRNA gene sequencing and ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS)-based untargeted metabolomics analyses were applied to determine the microbial and metabolic profiles in chicken during chilled storage. The microbial and metabolic datasets were subjected to combined analysis using weighted gene co-expression network analysis (WGCNA) and Spearman’s correlation analysis. Brochothrix, Carnobacterium, Photobacterium, Pseudomonas, Acinetobacter, Serratia, Kurthia, Shewanella, and Obesumbacterium genera were identified as the dominant spoilage bacteria in chilled chicken. Ten metabolic pathways, including histidine metabolism and purine metabolism, were identified as potential mechanisms underlying chilled chicken spoilage. Correlation analysis demonstrated that spoilage bacterial genera were highly correlated with spoilage-related metabolites. Taken together, the present study proposed an integrated microbiome and metabolomics approach to investigate the mechanism of chilled chicken spoilage caused by microbial activity. The results obtained by this approach provide a comprehensive insight into changes in the microbial and metabolic profiles of chilled chicken during spoilage.Sour liquid fermentation is commonly used in the sedimentation process of traditional starch production, where bacteria play a critical role in starch flocculation. In this study, the dynamic changes of bacterial compositions during sweet potato sour liquid (SPSL) fermentation were profiled using the single-molecule real-time (SMRT) sequencing, unveiling that Leuconostoc citreum, Leuconostoc pseudomesenteroides, Lactococcus lactis, and Lactobacillus plantarum were the dominant microorganisms in the process, and Leuconostoc citreum exhibited a strong positive correlation with starch flocculation rate (FR). In total, 75 lactic acid bacterial (LAB) strains were isolated from the SPSL, but only 7 of them caused starch flocculation. For the first time, Leuconostoc citreum strains were reported with excellent starch-flocculating abilities (up to 55.56% FR in 20 min), which might be attributed to their ability to connect starch granules through the cell surface to form large aggregation. This study provides a comprehensive understanding of the bacterial dynamics in SPSL fermentation at the species level. A starch flocculation yield of 93.63% was achieved within 1 h by using the newly discovered Leuconostoc citreum SJ-57. The time required for total starch sedimentation was reduced from 10 h to 4 h, compared with the traditional process. These results suggest that this novel bioflocculant is more suitable for modernizing the traditional SPSL fermentation process and achieving rapid and highly efficient starch sedimentation.