-
Nash Buchanan posted an update 3 days, 15 hours ago
A lack of Canadian pediatric lipid guidelines was reported as a major barrier for 49% (114/233) and minor barrier for 40% (93/213). The rate of routine lipid screening of healthy 9-11 year old youth among Canadian primary-care-providing pediatricians is low and at odds with current US guidelines. This discrepancy may be due at least in part to a lack of a Canadian guidelines on pediatric dyslipidemia, the development of which may address certain perceived barriers and influence future attitudes.Strongyloides stercoralis is a parasitic nematode and a major pathogen responsible for human strongyloidiasis. The presence of this species in the dog population has led to an interest in studying the phylogenetic relationships among Strongyloides spp. in carnivore hosts. In the present study, Strongyloides spp. from various carnivore hosts (raccoon, Japanese badger, Siberian weasel, raccoon dog, masked palm civet, and domestic cat) were sought. Except for civets, Strongyloides spp. were identified in all host species. Based on 18S rDNA sequences, nine OTUs (operational taxonomy units) were identified. Molecular phylogenetic analyses using 18S28S rDNA and mitochondrial cox1 (cytochrome c oxidase subunit 1) sequences clustered them into two groups. The first group (named the stercoralis/procyonis group) was comprised of six OTUs and occurred in cats, raccoon dogs, raccoons (S. procyonis), Siberian weasels, and Japanese badgers and included S. stercoralis from humans and dogs. The second group (named the planiceps group) was made up of Strongyloides spp. from raccoon dogs (two OTUs) and one OTU from Siberian weasels. Subsequent analysis using almost the full-length nucleotide sequences of protein-coding genes in their mitochondrial genomes placed Strongyloides spp. of cats in a sister taxon position to S. stercoralis, whereas S. procyonis from raccoons was more distantly related to them. The presence of Strongyloides spp. from various carnivore hosts, which are close relatives of S. stercoralis, suggests this group of Strongyloides (the stercoralis/procyonis group) essentially evolved as parasites of carnivores, although more data on Strongyloides spp. from primate hosts are needed.Recent work showed that contrary to conventional wisdom, fine surface engineered excipients outperform their larger counterparts in blends of highly loaded blends of cohesive drug powders in terms of their packing, flowability and tablet tensile strength. Here, two continuous devices, fluid-energy mill (FEM) and conical mill (Comil), are compared with LabRAM, a batch device used in previous work, for nano-silica dry coating of microcrystalline cellulose (MCC) excipients, 20 and 30 μm. Coated MCCs from all three devices had higher bulk densities and flow function coefficients (FFCs) compared with Avicel PH-102. Silica coating quality was best with LabRAM, but also good with FEM and Comil, although Comil was less effective for the finer MCC. However, the better coating quality of LabRAM had a downside of having poorer compaction properties. The most surprising outcome was that multi-component blends of 17 wt% coated MCC with 60 wt % Ibuprofen 50 had higher bulk density, higher or similar flowability, higher tablet tensile strength, and comparable Ibuprofen dissolution from tablets, compared to those with Prosolv 50, a silicified excipient. The FEM dry coated MCC blends, having only 0.17 wt% silica, performed the best, having desirable bulk density, FFC, and tensile strength that could facilitate high-speed direct compression tableting. In summary, considering that achieving best coating quality need not be the primary objective, FEM may be the best option for producing desired sized dry coated fine excipients.Background Diabetic peripheral neuropathy, a common complication of diabetic mellitus, has brought a threaten on patients’ health. The bone marrow-derived mesenchymal stem cells (BMSCs) were reported to play an important role in diverse diseases. ML349 Nevertheless, the specific function of BMSCs in diabetic peripheral neuropathy remained uncharacterized. Methods A wide range of experiments including RT-qPCR, western blot, H&E staining, oxidative stress assessment, measurement of thermal sensitivity, ELISA, urine protein and CCK-8 assays were implemented to explore the function and mechanism of BMSCs in vivo and vitro. Results The experimental results displayed that BMSCs improve STZ-induced diabetes symptoms in rats by decreasing blood glucose and urinary protein. Functionally, BMSCs ameliorate oxidative stress, painful diabetic neuropathy, neurotrophic status and angiogenesis in STZ-induced rats. Moreover, BMSCs participate in the regulation of sciatic neuro morphology in diabetic neuropathy rat model. In mechanism, BMSCs alleviate diabetic peripheral neuropathy via activating GSK-3β/β-catenin signaling pathway in rats and improve Schwann’s cells viability by activating GSK-3β/β-catenin signaling pathway under high glucose. Conclusions We verified that BMSCs alleviate diabetic peripheral neuropathy of rats induced by STZ via activating GSK-3β/β-catenin signaling pathway, which implied a novel biomarker for diabetic peripheral neuropathy treatment.Large-size subunit catalases (LSCs) have a C-terminal domain that is structurally similar to DJ-1 and Hsp31 proteins, which have well documented molecular chaperone activity. Like chaperones, LSCs are abundant proteins that are induced under stress conditions and during cell differentiation in different microorganisms. Here we document that the C-terminal domain of LSCs assist other proteins to preserve their active conformation. Heat, urea, or H2O2 denaturation of alcohol dehydrogenase was prevented by LSCs or the C-terminal domain of Catalase-3 (TDC3); in contrast, small-size subunit catalases (SSCs) or LSCs without the C-terminal domain (C3ΔTD or C63) did not have this effect. Similar results were obtained if the alcohol dehydrogenase was previously denatured by heat and then the different catalases or truncated enzymes were added. The TDC3 also protected both the C3ΔTD and the bovine liver catalase from heat denaturation. The chaperone activity of CAT-3 or the TDC3 increased survival of E. coli under different stress conditions whereas the C3ΔTD did not.