-
Hoppe McLaughlin posted an update 1 day, 6 hours ago
Microbial cells generally leak various metabolites including those necessary to grow. Why cells secrete even essential chemicals so often is, however, still unclear. Based on analytical and numerical calculations, we show that if the intracellular metabolism includes multibody (e.g., catalytic) reactions, leakage of essential metabolites can promote the leaking cell’s growth. This advantage is typical for most metabolic networks via “flux control” and “growth-dilution” mechanisms, as a general consequence of the balance between synthesis and growth-induced dilution with autocatalytic reactions. We further argue that this advantage may lead to a novel form of symbiosis among diverse cells.At a quantum critical point, the low-energy physics of a quantum spin chain is described by conformal field theory (CFT). Given the Hamiltonian of a critical spin chain, we propose a variational method to build an approximate lattice representation ϕ_α of the corresponding primary CFT operators ϕ_α^CFT. We then show how to numerically compute the operator product expansion coefficients C_αβγ^CFT governing the fusion of two primary fields. In this way, we complete the implementation of Cardy’s program, outlined in the 1980s, which aims to extract the universality class of a phase transition, as encoded in the so-called conformal data of the underlying CFT, starting from a microscopic description. Our approach, demonstrated here for the critical quantum Ising model, only requires a generic (i.e., in general, nonintegrable) critical lattice Hamiltonian as its input.Processes occurring in the strong field regime of QED are characterized by background electromagnetic fields of the order of the critical field F_cr=m^2c^3/ℏ|e| in the rest frame of participating charges. It has been conjectured that if in their rest frame electrons and positrons experience field strengths of the order of F_cr/α^3/2≈1600F_cr, with α≈1/137 being the fine-structure constant, their effective coupling with radiation becomes of the order of unity. Here we show that channeling radiation by ultrarelativistic electrons with energies of the order of a few TeV on thin tungsten crystals allows us to test the predictions of QED close to this fully nonperturbative regime by measuring the angularly resolved single photon intensity spectrum. The proposed setup features the unique characteristics that essentially all electrons (1) undergo at most a single photon emission and (2) experience at the moment of emission and in the angular region of interest the maximum allowed value of the field strength, which at 2 TeV exceeds F_cr by more than 2 orders of magnitude in their rest frame.Nuclear spins of noble-gas atoms are exceptionally isolated from the environment and can maintain their quantum properties for hours at room temperature. Here we develop a mechanism for entangling two such distant macroscopic ensembles by using coherent light input. The interaction between the light and the noble-gas spins in each ensemble is mediated by spin-exchange collisions with alkali-metal spins, which are only virtually excited. The relevant conditions for experimental realizations with ^3He or ^129Xe are outlined.Can a bath of isotropic but active particles promote ordering of anisotropic but passive particles? In this Letter, we uncover a fluctuation-driven mechanism by which this is possible. Somewhat counterintuitively, we show that the passive particles tend to be more ordered upon increasing the noise strength of the active isotropic bath. AZD5069 in vitro We first demonstrate this in a general dynamical model for a nonconserved order parameter (model A) coupled to an active isotropic field and then concentrate on two examples (i) a collection of polar rods on a substrate in an active isotropic bath and (ii) a passive apolar suspension in a momentum conserved, actively forced but isotropic fluid, which are relevant for current research in active systems. Our theory, which is relevant for understanding ordering transitions in out-of-equilibrium systems can be tested in experiments, for instance, by introducing a low concentration of passive rodlike objects in active isotropic fluids and, since it is applicable to any nonconserved dynamical field, may have applications far beyond active matter.A new mechanism of bilinear magnetoresistance (BMR) is proposed and studied theoretically within the minimal model describing surface electronic states in topological insulators. The BMR appears as a consequence of the second-order response to electric field, and depends linearly on both magnetic field and current (electric field). The mechanism is based on the interplay of current-induced spin polarization and scattering processes due to inhomogeneities of spin-momentum locking, that unavoidably appear as a result of structural defects in topological insulators. The proposed mechanism leads to the BMR even if the electronic band structure is isotropic (e.g., absence of hexagonal warping), and is shown to be dominant at lower Fermi energies.Distinctive features of supersolids show up in their rotational properties. We calculate the moment of inertia of a harmonically trapped dipolar Bose-Einstein condensed gas as a function of the tunable scattering length parameter, providing the transition from the (fully) superfluid to the supersolid phase and eventually to an incoherent crystal of self-bound droplets. The transition from the superfluid to the supersolid phase is characterized by a jump in the moment of inertia, revealing its first order nature. In the case of elongated trapping in the plane of rotation, we show that the moment of inertia determines the value of the frequency of the scissors mode, which is significantly affected by the reduction of superfluidity in the supersolid phase. The case of an in-plane isotropic trapping is instead well suited to study the formation of quantized vortices, which are shown to be characterized, in the supersolid phase, by a sizeable deformed core, caused by the presence of the surrounding density peaks.Alternating current RLC electric circuits form an accessible and highly tunable platform simulating Hermitian as well as non-Hermitian (NH) quantum systems. We propose here a circuit realization of NH Dirac and Weyl Hamiltonians subject to time-reversal invariant pseudomagnetic field, enabling the exploration of novel NH physics. We identify the low-energy physics with a generic real energy spectrum from the NH Landau quantization of exceptional points and rings, which can avoid the NH skin effect and provides a physical example of a quasiparticle moving in the complex plane. Realistic detection schemes are designed to probe the flat energy bands, sublattice polarization, edge states protected by a NH energy-reflection symmetry, and a characteristic nodeless probability distribution.