Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • McDonald Mcclure posted an update 1 day, 1 hour ago

    During mitosis, sister chromatids attach to microtubules from opposite poles, called biorientation. Sister chromatid cohesion resists microtubule forces, generating tension, which provides the signal that biorientation has occurred. How tension silences the surveillance pathways that prevent cell cycle progression and correct erroneous kinetochore-microtubule attachments remains unclear. Here we show that SUMOylation dampens error correction to allow stable sister kinetochore biorientation and timely anaphase onset. The Siz1/Siz2 SUMO ligases modify the pericentromere-localized shugoshin (Sgo1) protein before its tension-dependent release from chromatin. Sgo1 SUMOylation reduces its binding to protein phosphatase 2A (PP2A), and weakening of this interaction is important for stable biorientation. Unstable biorientation in SUMO-deficient cells is associated with persistence of the chromosome passenger complex (CPC) at centromeres, and SUMOylation of CPC subunit Bir1 also contributes to timely anaphase onset. We propose that SUMOylation acts in a combinatorial manner to facilitate dismantling of the error correction machinery within pericentromeres and thereby sharpen the metaphase-anaphase transition.This short essay pretends to make the reader reflect on the concept of biological mass and on the added value that the determination of this molecular property of a protein brings to the interpretation of evolutionary and translational snake venomics research. Starting from the premise that the amino acid sequence is the most distinctive primary molecular characteristics of any protein, the thesis underlying the first part of this essay is that the isotopic distribution of a protein’s molecular mass serves to unambiguously differentiate it from any other of an organism’s proteome. In the second part of the essay, we discuss examples of collaborative projects among our laboratories, where mass profiling of snake venom PLA2 across conspecific populations played a key role revealing dispersal routes that determined the current phylogeographic pattern of the species.Pentatricopeptide repeat (PPR) proteins are involved in the C-to-U RNA editing of organellar transcripts. The maize genome contains over 600 PPR proteins and few have been found to function in the C-to-U RNA editing in chloroplasts. Here, we report the function of ZmPPR26 in the C-to-U RNA editing and chloroplast biogenesis in maize. ZmPPR26 encodes a DYW-type PPR protein targeted to chloroplasts. The zmppr26 mutant exhibits albino seedling-lethal phenotype. Loss of function of ZmPPR26 abolishes the editing at atpA-1148 site, and decreases the editing at ndhF-62, rpl20-308, rpl2-2, rpoC2-2774, petB-668, rps8-182, and ndhA-50 sites. Overexpression of ZmPPR26 in zmppr26 restores the editing efficiency and rescues the albino seedling-lethal phenotype. Abolished editing at atpA-1148 causes a Leu to Ser change at AtpA-383 that leads to a reduction in the abundance of chloroplast ATP synthase in zmppr26. The accumulation of photosynthetic complexes are also markedly reduced in zmppr26, providing an explanation for the albino seedling-lethal phenotype. These results indicate that ZmPPR26 is required for the editing at atpA-1148 and is important for editing at the other seven sites in maize chloroplasts. The editing at atpA-1148 is critical for AtpA function, assembly of ATP synthase complex, and chloroplast biogenesis in maize.The vertebrate retina is generated by retinal progenitor cells (RPCs), which produce >100 cell types. Although some RPCs produce many cell types, other RPCs produce restricted types of daughter cells, such as a cone photoreceptor and a horizontal cell (HC). We used genome-wide assays of chromatin structure to compare the profiles of a restricted cone/HC RPC and those of other RPCs in chicks. These data nominated regions of regulatory activity, which were tested in tissue, leading to the identification of many cis-regulatory modules (CRMs) active in cone/HC RPCs and developing cones. Two transcription factors, Otx2 and Oc1, were found to bind to many of these CRMs, including those near genes important for cone development and function, and their binding sites were required for activity. We also found that Otx2 has a predicted autoregulatory CRM. These results suggest that Otx2, Oc1 and possibly other Onecut proteins have a broad role in coordinating cone development and function. The many newly discovered CRMs for cones are potentially useful reagents for gene therapy of cone diseases.The stem cell-containing undifferentiated spermatogonial population in mammals, which ensures continual sperm production, arises during development from prospermatogonial precursors. Although a period of quiescence is known to occur in prospermatogonia prior to postnatal spermatogonial transition, the importance of this has not been defined. Here, using mouse models with conditional knockout of the master cell cycle regulator Rb1 to disrupt normal timing of the quiescence period, we found that failure to initiate mitotic arrest during fetal development leads to prospermatogonial apoptosis and germline ablation. Outcomes of single-cell RNA-sequencing analysis indicate that oxidative phosphorylation activity and inhibition of meiotic initiation are disrupted in prospermatogonia that fail to enter quiescence on a normal timeline. Taken together, these findings suggest that key layers of programming are laid down during the quiescent period in prospermatogonia to ensure proper fate specification and fitness in postnatal life.YbeY is an ultraconserved small protein belonging to the unique heritage shared by most existing bacteria and eukaryotic organelles of bacterial origin, mitochondria and chloroplasts. Studied in more than a dozen of evolutionarily distant species, YbeY is invariably critical for cellular physiology. However, the exact mechanisms by which it exerts such penetrating influence are not completely understood. In this review, we attempt a transversal analysis of the current knowledge about YbeY, based on genetic, structural, and biochemical data from a wide variety of models. 17-DMAG cell line We propose that YbeY, in association with the ribosomal protein uS11 and the assembly GTPase Era, plays a critical role in the biogenesis of the small ribosomal subunit, and more specifically its platform region, in diverse genetic systems of bacterial type.

Facebook Pagelike Widget

Who’s Online

Profile picture of Gamble Holmgaard
Profile picture of McNeill Nikolajsen
Profile picture of Agerskov Brogaard
Profile picture of McCarthy Morin