Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Torres Kinney posted an update 2 days ago

    Vascular smooth muscle cells (VSMCs) proliferation and migration play a fundamental role during the process of hypertensive angiopathy. Angiotensin-II (Ang-II) is one of the robust phenotype-modulating agents, which changes VSMCs to efficiently proliferate and migrate. The mechanism of the proliferation and migration is not well understood yet. Septin4, as a member of GTP binding protein family, is widely expressed in the eukaryotic cells and considered to be an essential component of the cytoskeleton which is involved in many important physiological processes. We approved that Septin4 expression was upregulated in mouse aorta by continuous infusion of Ang-II and in cultured VSMCs treated with Ang-II. Overexpression of Septin4 led to lower level of autophagy and decreased capacity of proliferation and migration. In order to identify the mechanism by which Septin4 interacts with these processes, we blocked autophagy by chloroquine (CQ). After inhibiting the autophagy, the ability of proliferation and migration was further restrained in the Septin4 overexpression VSMCs. In conclusion, our results indicated that during the process of VSMCs proliferation and migration induced by Ang-II, Septin4 modulated autophagy and thus regulated the activity of proliferation and migration. Microtubules are made up of tubulin protein and play a very important part in numerous cellular events of eukaryotic cells, which is why they are seen as attractive targets for tumor chemotherapy. BNC105, a known vascular targeting agent, has entered in phase II clinical trials. It has previously been confirmed that BNC105 is an effective microtubule targeting agent for various cancers. BNC105 exhibits selectivity for tumor cells, elicits vascular disrupting effects, and inhibits tumor growth. However, the molecular mechanism of BNC105 is still elusive. Herein, the crystal structure of BNC105 in complex with tubulin protein is revealed, demonstrating the its interaction with the colchicine binding site. In order to thoroughly evaluate its molecular mechanism from a structural-activity-relationship standpoint, the binding mode of tubulin to BNC-105 is compared with colchicine, CA-4 and other BNC-105 derivatives. Our study not only confirms the detailed interactions of the BNC105-tubulin complex, but also offer substantial structural foundation for the design and development of novel benzo[b]furan derivatives as microtubule targeting agents. Recently, we reported that chemokine (C-X-C motif) receptor 4 (CXCR4) heteromerizes with α1-adrenergic receptors (AR) on the cell surface of vascular smooth muscle cells, through which the receptors cross-talk. Direct biophysical evidence for CXCR4α1-AR heteromers, however, is lacking. Here we utilized bimolecular luminescence/fluorescence complementation (BiLC/BiFC) combined with intermolecular bioluminescence resonance energy transfer (BRET) assays in HEK293T cells to evaluate CXCR4α1a/b/d-AR heteromerization. Atypical chemokine receptor 3 (ACKR3) and metabotropic glutamate receptor 1 (mGlu1R) were utilized as controls. CDK4/6-IN-6 datasheet BRET between CXCR4-RLuc (Renilla reniformis) and enhanced yellow fluorescent protein (EYFP)-tagged ACKR3 or α1a/b/d-ARs fulfilled criteria for constitutive heteromerization. BRET between CXCR4-RLuc and EYFP or mGlu1R-EYFP were nonspecific. BRET50 for CXCR4ACKR3 and CXCR4α1a/b/d-AR heteromers were comparable. Stimulation of cells with phenylephrine increased BRETmax of CXCR4α1a/b/d-AR heteromers without affecting BRET50; stimulation with CXCL12 reduced BRETmax of CXCR4α1a-AR heteromers, but did not affect BRET50 or BRETmax/50 for CXCR4α1b/d-AR. A peptide analogue of transmembrane domain (TM) 2 of CXCR4 reduced BRETmax of CXCR4α1a/b/d-AR heteromers and increased BRET50 of CXCR4α1a/b-AR interactions. A TM4 analogue of CXCR4 did not alter BRET. We observed CXCR4, α1a-AR and mGlu1R homodimerization by BiFC/BiLC, and heteromerization of homodimeric CXCR4 with proto- and homodimeric α1a-AR by BiFC/BiLC BRET. BiFC/BiLC BRET for interactions between homodimeric CXCR4 and homodimeric mGlu1R was nonspecific. Our findings suggest that the heteromerization affinity of CXCR4 for ACKR3 and α1-ARs is comparable, provide evidence for conformational changes of the receptor complexes upon agonist binding and support the concept that proto- and oligomeric CXCR4 and α1-ARs constitutively form higher-order hetero-oligomeric receptor clusters. Upregulation of the Src tyrosine kinase is implicated in the progression of cancer. The oncogenic potential of Src is suppressed via several negative regulation systems including degradation via the ubiquitin-proteasome pathway. Here, we show that ubiquitination of Src promotes its secretion via small extracellular vesicles (sEVs) to suppress its oncogenic potential. In MDCK cells expressing a modified Src that can be activated by hydroxytamoxifen, activated Src was transported to late endosomes/lysosomes and secreted via sEVs. The secretion of Src was suppressed by ablation of Cbl E3-ligase, suggesting the contribution of ubiquitination to this process. Activated Src was ubiquitinated at multiple sites, and Lys429 was identified as a critical site for sEV-mediated secretion. Mutation of Src at Lys429 (R429) caused resistance to ubiquitination and decreased its secretion via sEVs. The activated R429 mutant was also transported to late endosomes/lysosomes, whereas its incorporation into intraluminal vesicles was reduced. Activation of the R429 mutant induced a greater FAK activation than that of wild-type Src, thereby potentiating Src-induced invasive phenotypes, such as invadopodia formation and invasive activity. These findings demonstrate that ubiquitination of activated Src at Lys429 promotes its secretion via sEVs, suggesting a potential strategy to suppress the oncogenic function of upregulated Src. Influenza A virus nucleoprotein (NP) is a structural component that encapsulates the viral genome into the form of ribonucleoprotein complexes (vRNPs). Efficient assembly of vRNPs is critical for the virus life cycle. The assembly route from RNA-free NP to the NP-RNA polymer in vRNPs has been suggested to require a cellular factor UAP56, but the mechanism is poorly understood. Here, we characterized the interaction between NP and UAP56 using recombinant proteins and showed that UAP56 features two NP binding sites. In addition to the UAP56 core comprised of two RecA domains, we identified the N-terminal extension (NTE) of UAP56 as a previously unknown NP binding site. In particular, UAP56-NTE recognizes the nucleic acid binding region of NP. This corroborates our observation that binding of UAP56-NTE and RNA to NP is mutually exclusive. Collectively, our results reveal the molecular basis for how UAP56 acts on RNA-free NP, and provide new insights into NP-mediated influenza genome packaging.

Facebook Pagelike Widget

Who’s Online

Profile picture of Woodard Kahn
Profile picture of Sosa Cross
Profile picture of Hamann Emery
Profile picture of York Hood
Profile picture of Oneal Palmer
Profile picture of Klint Wilder