Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Pacheco Medeiros posted an update 1 week, 5 days ago

    PCL/Gel/BCNC were found suitable for enhancing axon growth and elongation supporting communication between tumor cells and the microenvironment, triggering the process of tumor recurrence. Based on these results, PCL/Gel/BCNC composite scaffolds are a good candidate for biomimetic GBM tumor platform. The binary nanocomposites blended by carboxymethyl cellulose (CMC) and SiO2 nanoparticles were constructed to prepare the films with superior thermal stability and flame retardant properties. The incorporation of cellulose nanofibers(CNFs) and SiO2 nanoparticles were followed to prepare ternary nanocomposite films exhibiting excellent mechanical properties. The mechanism and chemical reaction of the thermal decomposition for the CMC/SiO2 composite membrane were proposed, which showed that the mass residuals were Na2CO3, SiO2 and Na2SiO3, Na2CO3 when the content of the SiO2 nanoparticles was lowered and higher than 9.6 %, respectively. Compared with the pure CMC, micro combustion calorimeter (MCC) showed that the total heat release (THR) and the peak heat release rate (PHRR) both decreased from 6.4 kJ/g to 5.8 kJ/g, 134 w/g to 27 w/g, respectively. Moreover, mechanical properties of CMC/CNFs/SiO2 membrane showed that the toughness and rigidity of the nanocomposites increased by 56.0 % and 63.0 % on the basis of CMC, respectively. Rheological properties of hydrogels composed of TEMPO-oxidised cellulose nanofibrils (OCNF)-starch in the presence of cationic surfactants were investigated. The cationic surfactants dodecyltrimethylammonium bromide (DTAB) and cetyltrimethylammonium bromide (CTAB) were used to trigger gelation of OCNF at around 5 mM surfactant. As OCNF and DTAB/CTAB are oppositely charged, an electrostatic attraction is suggested to explain the gelation mechanism. OCNF (1 wt%) and soluble starch (0.5 and 1 wt%) were blended to prepare hydrogels, where the addition of starch to the OCNF resulted in a higher storage modulus. Starch polymers were suggested to form networks with cellulose nanofibrils. The stiffness and viscosity of OCNF-Starch hydrogels were enhanced further by the addition of cationic surfactants (5 mM of DTAB/CTAB). ζ -potential and amylose-iodine complex analyses were also conducted to confirm surface charge and interaction of OCNF-starch-surfactant in order to provide an in-depth understanding of the surfactant-induced gel networks. In this study, an injectable and self-healing hydrogel based on the boronic ester dynamic covalent bond between phenylboronic acid modified hyaluronic acid (HA-PBA) and the commercially available poly (vinyl alcohol) (PVA) is prepared and should have multi-functions for biomedical applications. The hydrogels were rapidly formed under mild conditions, and the rheological properties and in vitro degradation were systematically characterized. The HA-based hydrogels possessed good injectability and self-healing properties because of the dynamic bond. Moreover, due to the sensitivity of boronic ester to the biologically relevant concentration of hydrogen peroxide (H2O2), a major reactive oxygen species (ROS), the injectable hydrogel could be used as a H2O2/ROS responsive drug delivery system. Selleckchem Voruciclib The hydrogels supported good viability of encapsulated neural progenitor cells (NPC) and protected NPC from ROS induced damage in vitro when H2O2 was present in the media. The dynamic hydrogels were further applied as bio-inks for 3D printing/bioprinting. Overall, this facilely prepared dynamic hydrogel based on HA-PBA and PVA may have many potential biomedical applications, including drug delivery, 3D culture of cells, and 3D bioprinting. The residues generated after the extraction of agar from Gelidium sesquipedale by means of a hot-water treatment, with (NaOH+HW residue) and without (HW residue) an alkali pre-treatment have been valorized to produce high performance cellulosic films. Both residues were mainly composed of structural carbohydrates (in particular, agar), ashes and lipids. The residual agar could only be completely removed by applying a two-step process based on bleaching and alkaline treatments. The application of the alkaline pre-treatment for the extraction of agar did not significantly affect the properties of the films produced from the extracted fractions, hence making the HW residue more sustainable and economically viable. The agar remaining in the less purified fractions had a positive effect on the performance of the films, improving their transparency, mechanical properties and water vapour barrier, outperforming benchmark biopolymers; in addition, these materials presented antioxidant capacity inhibiting the degradation of β-carotene. Atmospheric low-temperature plasma has been widely applied in surface modification of lignocellulose for manufacturing lightweight, strong composites. This study is aimed at elaborating the structural changes of cellulose after plasma treatment and further understanding the mechanism underlying plasma-induced oxidation of cellulose. Experiments suggested that atmospheric low-temperature plasma exhibits strong capacity to cleave covalent bonds, leading to oxidation and degradation of cellulose. Theoretical analysis revealed that cleavage of C4O covalent bond is the first-step reaction during plasma-induced oxidation due to its low bond dissociation energy (229.2 kJ mol-1). Subsequent pyranose ring-breaking reaction dominates dynamically and thermodynamically. Obtained outcomes are vital for fundamentally understanding the plasma-lignocellulose interaction. On that basis, plasma treatment for activation and oxidation of lignocellulose can be optimized and designed for improved efficiency. Wettability of lignocellulose can be thus improved in a short time, providing an opportunity to manufacture lignocellulose-based composites with enhanced efficiency and mechanical properties in future. Generation of durable tumor-specific immune response without isolation and expansion of dendritic cells or T cells ex vivo remains a challenge. In this study, we investigated the impact of nanoparticle-mediated photothermolysis in combination with checkpoint inhibition on the induction of systemic antitumor immunity. Photothermolysis based on near-infrared light-absorbing copper sulfide nanoparticles and 15-ns laser pulses combined with the immune checkpoint inhibitor anti-PD-1 antibody (αPD-1) increased tumor infiltration by antigen-presenting cells and CD8-positive T lymphocytes in the B16-OVA mouse model. Moreover, combined photothermolysis, polymeric conjugate of the Toll-like receptor 9 agonist CpG, and αPD-1 significantly prolonged mouse survival after re-inoculation of tumor cells at a distant site compared to individual treatments alone in the poorly immunogenic syngeneic ID8-ip1-Luc ovarian tumor model. Thus, photothermolysis is a promising interventional technique that synergizes with Toll-like receptor 9 agonists and immune checkpoint inhibitors to enhance the abscopal effect in tumors.

Facebook Pagelike Widget

Who’s Online

Profile picture of Humphrey Lane
Profile picture of Holgersen Feddersen
Profile picture of Slater Puggaard
Profile picture of Finley Kim