Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Pacheco Medeiros posted an update 1 week, 4 days ago

    Furthermore, personal barriers toward EBPH were more common in students than teachers. Metabolism agonist In conclusion, there are differences in awareness, knowledge, skills, behaviors, and barriers of EBPH between teachers and students. The data suggest that an initiative of systematically teaching EBPH to undergraduates is important.Bioremediation with genetically modified microalgae is becoming an alternative to remove metalloids and metals such as cadmium, a contaminant produced in industrial processes and found in domestic waste. Its removal is important in several countries including Mexico, where the San Luis Potosi region has elevated levels of it. We generated a construct with a synthetic gene for γ-glutamylcysteine synthetase and employed it in the chloroplast transformation of Chlamydomonas reinhardtii. In dose-response kinetics with media containing from 1 to 20 mg/L of cadmium, both the transplastomic clone and the wild-type strain grew similarly, but the former removed up to 32% more cadmium. While the growth of both decreased with higher concentrations of cadmium, the transplastomic clone removed 20 ± 9% more than the wild-type strain. Compared to the wild-type strain, in the transplastomic clone the activity of glutathione S-transferase and the intracellular glutathione increased up to 2.1 and 1.9 times, respectively, in media with 2.5 and 10 mg/mL of cadmium. While 20 mg/L of cadmium inhibited the growth of both, the transplastomic clone gradually duplicated. These results confirm the expression of the synthetic gene gshA in the transformed strain as revealed in its increased removal uptake and metabolic response.There is a growing industry and regulatory need to detect host cell protein (HCP) impurities in the production of protein biopharmaceuticals, as certain HCPs can impact product stability, safety, and efficacy, even at low levels. In some cases, regulatory agencies require the identification and the quantification of HCPs in drug products (DPs) for risk assessment, and this is an active and growing topic of conversation in the industry and amongst regulators. In this study, we developed a sensitive, robust, and reproducible workflow for HCP detection and quantification in a significantly shorter turnaround time than that previously reported using an Evosep ONE LC system coupled to an Orbitrap Fusion Lumos mass spectrometer. Because of its fast turnaround time, this HCP workflow can be integrated into process development for the high-throughput (60 samples analyzed per day) identification of HCPs. The ability to rapidly measure HCPs and follow their clearance throughout the downstream process can be used to pinpoint sources of HCP contamination, which can be used to optimize biopharmaceutical production to minimize HCP levels. Analysis of the NIST monoclonal antibody reference material using the rapid HCP profiling workflow detected the largest number of HCPs reported to date, underscoring an improvement in performance along with an increased throughput. The HCP workflow can be readily implemented and adapted for different purposes to guide biopharmaceutical process development and enable better risk assessment of HCPs in drug substances and DPs.Materials and devices with tunable dry adhesion have many applications, including transfer printing, climbing robots, and gripping in pick-and-place processes. In this paper, a novel soft device to achieve dynamically tunable dry adhesion via modulation of subsurface pneumatic pressure is introduced. Specifically, a cylindrical elastomer pillar with a mushroom-shaped cap and annular chamber that can be pressurized to tune the adhesion is investigated. Finite element-based mechanics models and experiments are used to design, understand, and demonstrate the adhesion of the device. Specifically, the device is designed using mechanics modeling such that the pressure applied inside the annular chamber significantly alters the stress distribution at the adhered interface and thus changes the effective adhesion strength. Devices made of polydimethylsiloxane (PDMS) with different elastic moduli were tested against glass, silicon, and aluminum substrates. Adhesion strengths (σ0) ranging from ∼37 kPa (between PDMS and glass) to ∼67 kPa (between PDMS and polished aluminum) are achieved for the nonpressurized state. For all cases, regardless of the material and roughness of the substrates, the adhesion strength dropped to 40% of the strength of the nonpressurized state (equivalent to a 2.5× adhesion switching ratio) by increasing the chamber pressure from 0.3σ0 to 0.6σ0. Furthermore, the strength drops to 20% of the unpressurized strength (equivalent to a 5× adhesion switching ratio) when the chamber pressure is increased to σ0.The strong metal-support interaction (SMSI) is one of the most important concepts in heterogeneous catalysis. Herein we report a study of Pt-TiO2 SMSI using Pt/rutile TiO2(110) model catalysts with different Pt particle sizes by means of X-ray photoelectron spectroscopy, ion scattering spectroscopy, and the adsorption of probe molecules. The acquired results unambiguously demonstrate a size dependence of the Pt-TiO2 SMSI, in which SMSI occurs barely between supported Pt clusters and the TiO2(110) substrate but obviously between supported Pt nanoparticles and the TiO2(110) substrate. Such a size-dependent SMSI could be associated with size-dependent electronic structures of the supported Pt particles. These results highlight the sensitivity of the SMSI to the size of supported metal particles, which greatly advances the fundamental understanding.Au nanoparticles (NPs) labeled with the handedness tag of “d-” or “l-“, which were detached from inorganic chiral silica, showed both intrinsic chirality and surface enhanced Raman scattering (SERS) activity. In the presence of these chiral Au substrates, it was found that the enantiomer of cystine with the same handedness tag of Au NPs would show stronger Raman scattering signal intensities than those of the enantiomer with the opposite tag, where the differences could be over three times. Consequently, this work afforded a novel enantioselective recognition method on ordinary Raman spectroscopy by using chiral plasmonic metallic nanomaterials.

Facebook Pagelike Widget

Who’s Online

Profile picture of Sellers Stender
Profile picture of Carver Demir
Profile picture of Winther Gutierrez
Profile picture of Rosenberg Danielsen
Profile picture of Balling Sanchez
Profile picture of Lane Moss