-
Fournier Mosegaard posted an update 1 week, 4 days ago
Colletotrichum orbiculare, an anthracnose disease fungus of cucurbit plants, extends penetration hyphae inside the epidermal cells of host plants. Unlike vegetative hyphae formed on a nutrient rich medium, this pathogen initially develops biotrophic penetration hyphae, which acquire nutrient resources from living host cells and secret effector proteins to suppress host defense responses. Subsequently, the nature of penetration hyphae changes from biotrophy to necrotrophy in response to the interaction with a host plant. Hence, controlling the extension of penetration hyphae is crucial for C. orbiculare infection. Here, we identified CoGRIM19 encoding Nadh-ubiquinone oxidoreductase subunit as a pathogenicity gene. Pathogenicity assays showed that the cogrim19 mutant caused no visible symptoms on cucumber cotyledons. Microscopic observations revealed that the cogrim19 mutant developed an appressorium and penetration hyphae under artificial conditions such as on coverslips or cellulose membranes, but the penetration hyphae of the mutant were retarded in the cucumber cotyledons. Microscopic observations of biotrophy-specific expression fluorescent signals revealed that the biotrophic stage was maintained in the retarded penetration hyphae of the cogrim19 mutant as the penetration of the wild type. In addition to cytological observations, pathogenicity assays using wounded leaves showed that the cogrim19 mutant had an attenuated pathogenesis. Taking our results together, CoGRIM19 is required for invasive hyphal growth inside the epidermal cells of cucumber cotyledons in C. orbiculare.Migraineurs experience increased oxidative stress which drives the initiation and maintenance of migraine-related pain in animal models and, by extension, migraine in humans. Oxidative stress augments calcitonin gene-related peptide (CGRP) levels, a mediator of migraine pain. Insulin-like growth factor-1 (IGF-1), a neuroprotective growth factor, reduces susceptibility to spreading depression, a preclinical model of migraine, in cultured brain slices by blocking oxidative stress and neuroinflammation from microglia. N-butyl-N-(4-hydroxybutyl) nitrosamine supplier Similarly, nasal delivery of IGF-1 inhibits spreading depression in vivo. After recurrent cortical spreading depression, nasal administration of IGF-1 also significantly reduces trigeminal ganglion oxidative stress and CGRP levels as well as trigeminocervical c-Fos activation. Here, we probed for the impact of nasal IGF-1 pretreatment on trigeminal system activation using a second well-established preclinical model of migraine, systemic nitroglycerin injection. Adult male rats were treated with one of three doses of IGF-1 (37.5, 75 or 150 μg) and the optimal dose found in males was subsequently used for treatment of female rats. One day later, animals received an intraperitoneal injection of nitroglycerin. Measurements taken two hours later after nitroglycerin alone showed increased surrogate markers of trigeminal activation – oxidative stress and CGRP in the trigeminal ganglion and c-Fos in the trigeminocervical complex compared to vehicle control. These effects were significantly reduced at all doses of IGF-1 for trigeminal ganglion metrics of oxidative stress and CGRP and only at the lowest dose in both males and females for c-Fos. The latter inverted U-shaped or hormetic response is seen in enzyme-targeting drugs. While the specific mechanisms remain to be explored, our data here supports the ability of IGF-1 to preserve mitochondrial and antioxidant pathway homeostasis as means to prevent nociceptive activation in the trigeminal system produced by an experimental migraine model.Radix Pseudostellariae protein (RPP) with satisfactory antioxidant activity and self-assembled ability was extracted from dried Radix Pseudostellariae. In this study, RPP-curcumin nanocomplex (RPP-Cur) was fabricated, and its improvement on the stability, cellular uptake and antioxidant activity of curcumin was investigated. RPP-Cur with homogeneously spherical structure exhibited good stability, which could maintain the morphology against simulated gastrointestinal digestion and up to 300 mM ionic concentration. After RPP nanoparticles encapsulation, the retention of curcumin increased 1.45 times under UV irradiation for 6 h. Besides, RPP-Cur exhibited additive reducing power of curcumin and RPP. The transport efficiency of hydrophobic curcumin across Caco-2 cells monolayer was greatly improved by RPP nanoparticle by 3.7 folds. RPP-Cur was able to be internalized by Caco-2 cells dose-dependently via macropinocytosis and clathrin-mediated endocytosis. The cellular uptake efficiency of embedded curcumin in RPP nanoparticles by Caco-2 cells was significantly higher than that of free curcumin, which might contribute to the enhanced intracellular antioxidant activity of RPP-Cur. These findings suggest that the proteins from Radix Pseudostellariae have potential to be developed into novel delivery system with intrinsic antioxidant activity for the hydrophobic active molecules in healthy food field.This study aimed to evaluate the influence of progesterone (concentration and time of exposure) on endometrial decidualisation using an in vitro model cell line Human Endometrial Stromal Cells (HESCs). HESCs exposed to progesterone (1 and 10 μM) had higher percentages of decidualised cells and higher expression of the decidual marker (Insulin Like Growth Factor Binding Protein 1 (IGFBP1)) compared with those exposed to (0.1 μM). Among those HESCs cultured with 1 μM progesterone for 11 days, the highest rate of morphological differentiation (40-50%) occurred between days 7-9 and IGFBP1 peaked on day 7. The cell-cycle pathway was significantly down-regulated in HESCs exposed to at least 1 μM progesterone regardless of the incubation period. We conclude that exposure to high progesterone concentration for 7-9 days is essential to maximise the process of decidualisation.Polyurethanes (PUR) are ranked globally as the 6th most abundant synthetic polymer material. Most PUR materials are specifically designed to ensure long-term durability and high resistance to environmental factors. As the demand for diverse PUR materials is increasing annually in many industrial sectors, a large amount of PUR waste is also being generated, which requires proper disposal. In contrast to other mass-produced plastics such as PE, PP, and PET, PUR is a family of synthetic polymers, which differ considerably in their physical properties due to different building blocks (for example, polyester- or polyether-polyol) used in the synthesis. Despite its xenobiotic properties, PUR has been found to be susceptible to biodegradation by different microorganisms, albeit at very low rate under environmental and laboratory conditions. Discovery and characterization of highly efficient PUR-degrading microbes and enzymes capable of disassembling PUR polymer chains into oligo- and monomeric compounds is of fundamental importance for a circular plastic economy.