Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Fields Foged posted an update 2 weeks, 2 days ago

    0% using only 40 mM H2O2 within 50 min at 60 °C. Further adding 40 mM of H2O2, the chemical oxygen demand removal reached 75.1% after 100 min. M2 showed excellent stability and could be reused at least three times without any obvious deterioration in catalytic activity. M2 fitted well with the Freundlich isotherms and the first-order rate model.In the present study, the extraction of divalent heavy metals like copper [Cu (II)] and cadmium [Cd (II)] using a Pickering Emulsion Liquid Membrane (PELM) has been investigated by using three different surfactants such as Amphiphilic silica nanowires (ASNWs), Aluminum oxide nanoparticles (Alumina) and Sorbitan monooleate (SPAN 80). The influence of the process parameters such as pH, the stripping phase concentration, the agitation speed, and the carrier concentration on the extraction efficiency have been examined to find the optimum conditions at which the maximum recovery of Cu (II) and Cd (II) could take place. At optimum conditions, the extraction efficiency of 89.77% and 91.19% for Cu (II) and Cd (II) ions were achieved. Non-edible oils were used as diluent in this present study to reduce the need for toxic organic solvents in preparing PELM. The impact of each process factor on the extraction efficiency of Cu (II) and Cd (II) ions has been verified using analysis of variance (ANOVA). The higher values of F and lower values of P (less than 0.05) indicate pH is the most significant parameter on the percentage extraction of Cu (II) and Cd (II) using the Taguchi design approach.A new type of polyvinylidene fluoride (PVDF)/polymethyl methacrylate (PMMA) hollow fiber membrane (HFM) with five bores was prepared. The effects of polyvinylpyrrolidone (PVP), β-cyclodextrine (β-CD), polyethylene glycol (PEG) and polysorbate 80 (Tween 80) and their combinations on the PVDF/PMMA five-bore HFMs were investigated. The performance and fouling characteristics of five-bore HFMs for dyeing wastewater treatment were evaluated. Results indicated that adding 5 wt.% PVP increased the porosity and water flux of the membrane but decreased the bovine serum albumin (BSA) rejection rate. Adding 5 wt.% β-CD significantly improved the tensile strength and rejection of the HFMs with no effect on the increase of water flux. The characteristic of the HFMs with different additive combinations proved that the mixture of 5 wt.% PVP and 1 wt.% β-CD gave the best membrane performance, with a pure water flux of 427.9 L/ m2·h, a contact angle of 25°, and a rejection of BSA of 89.7%. The CODcr and UV254 removal rates of dyeing wastewater treatment were 61.10% and 50.41%, respectively. No breakage or leakage points were found after 120 days of operation, showing their reliable mechanical properties. We set the operating flux to 55 L/m2·h and cross-flow rate to 10%, which can effectively control membrane fouling.Negative ions powders (NIP) have been widely applied in many fields because of their natural electric field and far infrared radiation, especially in wastewater treatment. In this study, the NIP was first introduced into Fe3O4/H2O2 system to degrade methylene blue (MB). check details The MB removal was completely achieved at 5 h via a non-photochemical pathway and the degradation rate constant of this system is about 0.565 h-1, which is about 16 times higher than in Fe3O4/H2O2 Fenton-like system (0.035 h-1). In addition, the results of quenching experiments indicate that the electron (e-) and negative oxygen ion (•O2-) are the main reactive species. It was determined that Fe3O4@NIP is the effective component that leads to the activation of H2O2 to produce •OH, which derive from the pathway NIP acts as an electron donor to reduce Fe(III) into Fe(II). Moreover, NIP can produce negative ions, which is also conductive to degradation. This study suggests a promising direction for the practical application of NIP based catalysis by integrating it with the Fe(III)/Fe(II) transformation process.In this paper, combined with the addition of ethylenediaminetetraacetic acid (EDTA), the electrochemical treatment of waste activated sludge (WAS) was investigated to explore its effect on the release of phosphorus (P) from WAS. The results showed that during the electrochemical treatment, the addition of EDTA could significantly promote the release of P from the WAS to the supernatant, the optimal amount of EDTA was 0.4 g/g total suspended solids (TSS), when the release of total dissolved phosphorus (TDP), organic phosphorus (OP) and molybdate reactive phosphorus (PO43–P) were 187.30, 173.84 and 13.46 mg/L, respectively. OP was the most likely form of P to be released during this process. Moreover, combined electrochemical-EDTA treatment could promote the release of P and metal ions from extracellular polymeric substances (EPSs) to the supernatant, and increase the solubility and disintegration of sludge. EDTA chelated the metal ions of sludge flocs and phosphate precipitates to cause sludge floc decomposition, thereby promoting the release of P from WAS.Two advanced control strategies were applied in the secondary and tertiary stages, respectively, of a full scale wastewater treatment plant (WWTP). This has a nominal capacity of 330,000 population equivalent (PE), a complex configuration (having been upgraded several times through the years), and it faces significant seasonal load fluctuations (being located in a touristic area, in Northern Italy). The lifting station of the tertiary treatments (devoted to phosphorus precipitation and UV disinfection) was optimized by adjusting the pumped flowrate, depending on influent phosphorus concentration. A preliminary simulation showed that a 15% reduction of pumping energy could be achieved. This result was confirmed by field measurements. Moreover, a fuzzy control system was designed and applied to one of the six parallel nitrification reactors, yielding a reduction of more than 25% of the power requirement for aeration. Overall, the combined application of the two controllers led to a 7% reduction of the total energy consumption of the plant. This result is particularly promising given that the fuzzy controller was applied only to one of six biological reactors.

Facebook Pagelike Widget

Who’s Online

Profile picture of Boyette Carlsson
Profile picture of Fry Carney
Profile picture of Sun Mouritzen
Profile picture of Bradshaw Langley
Profile picture of Weinstein Nymann