-
Carpenter Eriksen posted an update 2 days, 21 hours ago
as never been more paramount.Certain probiotics can regulate the host’s neurobehavioral function through the microbiota-gut-brain axis. However, screening these probiotics is mainly carried out in animal models, and is costly and inefficient. Herein, a putative enterochromaffin cell line (RIN14B) was used as an in vitro pre-screening model; 30 bacterial strains were tested for bacteria-stimulated tryptophan hydroxylase 1 gene (Tph1) expression and 5-hydroxytryptophan/5-hydroxytryptamine secretion. All strains were further validated for their neurobehavioral effects in chronic stress-induced depressive mice. Using partial least squares (PLS) modeling of in vitro and in vivo datasets, we found that the level of Tph1 mRNA in RIN14B significantly correlated with the performance of a forced swim test and sucrose preference test, and serum corticosterone level in chronically stressed mice. Four strains were identified as the best candidates among 30 strains using principal component analysis on all in vivo measures, and unsurprisingly, three of them could enhance Tph1 expression in RIN14B, which further proved that the RIN14B-based screening method (especially the detection of bacteria-stimulated Tph1 mRNA) has good predictive validity and screening efficiency for the strain’s antidepressant-like capacity. Collectively, this study provides a novel in vitro method for screening probiotics (or other related bioproducts) with antidepressant-like potential.The growing demand for reliable and robust methodology in bio-chemical sensing calls for the continuous advancement of sensor technologies. Over the last two decades, surface-enhanced Raman spectroscopy (SERS) has emerged as one of the most promising analytical techniques for sensitive and trace analysis or detection in biomedical and agri-food applications. SERS overcomes the inherent sensitivity limitation associated with Raman spectroscopy, which provides vibrational “fingerprint” spectra of molecules that makes it unique and versatile among other spectroscopy techniques. This paper comprehensively reviews the recent advancements of SERS for biomedical, food and agricultural applications over the last 6 years, and we envision that, in the near future, some of these platforms have the potential to be translated as a point-of-care and rapid sensor for real-life end-user applications. The merits and limitations of various SERS sensor designs are analysed and discussed based on critical features such as sensitivity, specificity, usability, repeatability and reproducibility. We conclude by highlighting the opportunities and challenges in the field while stressing the technological gaps to be addressed in realizing commercially viable point-of-care SERS sensors for practical biomedical and agri-food technological applications.Generally, ginsenosides have the physiological effect of an anti-inflammatory immunity. After fermentation, the types of ginsenosides in ginseng change, and their physiological activity becomes a concern. L. plantarum KP-4 screened from Korean kimchi were used to ferment ginseng, and the changes of ginsenosides were observed. C57BL/6N mice were treated using fermented ginseng (390 mg kg-1 day-1), which was mixed with normal food, and an inflammatory mice model was established by the intraperitoneal injection of lipopolysaccharide (LPS) (2.5 mg per kg body weight) four weeks later. The liver index, pathological index, biochemical index, and inflammatory signaling pathway were determined. The results demonstrated that L. plantarum KP-4 fermentation increased the content of minor ginsenosides in ginseng and decreased the content of major ginsenosides. Fermented ginseng significantly reduced LPS-induced increases in ALT, AST, and pro-inflammatory cytokines IL-6, TNF-α, and IL-1β in mice. Supplementation with fermented ginseng significantly ameliorated LPS-induced overexpression of Toll-like receptor 4 (TLR4), caspase3, phosphorylation p38 mitogen-activated protein kinase (p38MAPK), and phosphorylation extracellular signal-regulated kinase (ERK) compared with the control group. Moreover, fermented ginseng significantly increased the expression of claudin 1, the intestinal tight junction protein, caused by LPS. In conclusion, fermented ginseng alleviates LPS-induced inflammation through the TLR4/MAPK signaling pathway and increased intestinal barrier function in mice.In optical biosensing, silk fibroin (SF) appears as a promising alternative where other materials, such as paper, find limitations. Besides its excellent optical properties and unmet capacity to stabilize biomacromolecules, SF in test strips exhibits additional functions, i.e. Cl-amidine clinical trial capillary pumping activity of 1.5 mm s-1, capacity to filter blood cells thanks to its small, but tuneable, porosity and enhanced biosensing sensitivity. The bulk functionalization of SF with the enzymes glucose oxidase and peroxidase and the mediator ABTS produces colourless and transparent SF films that respond to blood glucose increasing 2.5 times the sensitivity of conventional ABTS-based assays. This enhanced sensitivity results from the formation of SF-ABTS complexes, where SF becomes part of the bioassay. Additionally, SF films triple the durability of most stable cellulose-based sensors. Although demonstrated for glucose, SF microfluidic test strips may incorporate other optical bioassays, e.g. immunoassays, with the aim of transferring them from central laboratories to the place of patient’s care.In the bilayer ReS2 channel of a field-effect transistor (FET), we demonstrate using Raman spectroscopy that electron doping (n) results in softening of frequency and broadening of linewidth for the in-plane vibrational modes, leaving the out-of-plane vibrational modes unaffected. The largest change is observed for the in-plane Raman mode at ∼151 cm-1, which also shows doping induced Fano resonance with the Fano parameter 1/q = -0.17 at a doping concentration of ∼3.7 × 1013 cm-2. A quantitative understanding of our results is provided by first-principles density functional theory (DFT), showing that the electron-phonon coupling (EPC) of in-plane modes is stronger than that of out-of-plane modes, and its variation with doping is independent of the layer stacking. The origin of large EPC is traced to 1T to 1T’ structural phase transition of ReS2 involving in-plane displacement of atoms whose instability is driven by the nested Fermi surface of the 1T structure. Results are compared with those of the isostructural trilayer ReSe2.