Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Svenningsen Ladefoged posted an update 2 weeks, 3 days ago

    In this paper we present an approach to jointly recover camera pose, 3D shape, and object and deformation type grouping, from incomplete 2D annotations in a multi-instance collection of RGB images. Our approach is able to handle indistinctly both rigid and non-rigid categories. This advances existing work, which only addresses the problem for one single object or, they assume the groups to be known a priori when multiple instances are handled. In order to address this broader version of the problem, we encode object deformation by means of multiple unions of subspaces, that is able to span from small rigid motion to complex deformations. The model parameters are learned via Augmented Lagrange Multipliers, in a completely unsupervised manner that does not require any training data at all. Extensive experimental evaluation is provided in a wide variety of synthetic and real scenarios, including rigid and non-rigid categories with small and large deformations. We obtain state-of-the-art solutions in terms of 3D reconstruction accuracy, while also providing grouping results that allow splitting the input images into object instances and their associated type of deformation.Achieving human-like visual abilities is a holy grail for machine vision, yet precisely how insights from human vision can improve machines has remained unclear. Here, we demonstrate two key conceptual advances First, we show that most machine vision models are systematically different from human object perception. GBD-9 To do so, we collected a large dataset of perceptual distances between isolated objects in humans and asked whether these perceptual data can be predicted by many common machine vision algorithms. We found that while the best algorithms explain ~70% of the variance in the perceptual data, all the algorithms we tested make systematic errors on several types of objects. In particular, machine algorithms underestimated distances between symmetric objects compared to human perception. Second, we show that fixing these systematic biases can lead to substantial gains in classification performance. In particular, augmenting a state-of-the-art convolutional neural network with planar/reflection symmetry scores along multiple axes produced significant improvements in classification accuracy (1-10%) across categories. These results show that machine vision can be improved by discovering and fixing systematic differences from human vision.Rendering bridges the gap between 2D vision and 3D scenes by simulating the physical process of image formation. By inverting such renderer, one can think of a learning approach to infer 3D information from 2D images. However, standard graphics renderers involve a fundamental step called rasterization, which prevents rendering to be differentiable. Unlike the state-of-the-art differentiable renderers, which only approximate the rendering gradient in the backpropagation, we propose a natually differentiable rendering framework that is able to (1) directly render colorized mesh using differentiable functions and (2) back-propagate efficient supervisions to mesh vertices and their attributes from various forms of image representations. The key to our framework is a novel formulation that views rendering as an aggregation function that fuses the probabilistic contributions of all mesh triangles with respect to the rendered pixels. Such formulation enables our framework to flow gradients to the occluded and distant vertices, which cannot be achieved by the previous state-of-the-arts. We show that by using the proposed renderer, one can achieve significant improvement in 3D unsupervised single-view reconstruction both qualitatively and quantitatively. Experiments also demonstrate that our approach can handle the challenging tasks in image-based shape fitting, which remain nontrivial to existing differentiable renders.Data clustering, which is to partition the given data into different groups, has attracted much attention. Recently various effective algorithms have been developed to tackle the task. Among these methods, non-negative matrix factorization (NMF) has been demonstrated to be a powerful tool. However, there are still some problems. First, the standard NMF is sensitive to noises and outliers. Although L2,1 norm based NMF improves the robustness, it is still affected easily by large noises. Second, for most graph regularized NMF, the performance highly depends on the initial similarity graph. Third, many graph-based NMF models perform the graph construction and matrix factorization in two separated steps. Thus the learned graph structure may not be optimal. To overcome the above drawbacks, we propose a robust bi-stochastic graph regularized matrix factorization (RBSMF) framework for data clustering. Specifically, we present a general loss function, which is more robust than the commonly used L 2 and L 1 functions. Besides, instead of keeping the graph fixed, we learn an adaptive similarity graph. Furthermore, the graph updating and matrix factorization are processed simultaneously, which can make the learned graph more appropriate for clustering. Extensive experiments have shown the proposed RBSMF outperforms other state-of-the-art methods.Multi-Task Learning attempts to explore and mine the sufficient information within multiple related tasks for the better solutions. However, the performance of the existing multi-task approaches would largely degenerate when dealing with the polluted data, i.e., outliers. In this paper, we propose a novel robust multi-task model by incorporating a flexible manifold constraint (FMC-MTL) and a robust loss. Specifically speaking, multi-task subspace is embedded with a relaxed and generalized Stiefel Manifold for considering point-wise correlation and preserving the data structure simultaneously. In addition, a robust loss function is developed to ensure the robustness to outliers by smoothly interpolating between l2,1 -norm and squared Frobenius norm. Equipped with an efficient algorithm, FMC-MTL serves as a robust solution to tackling the severely polluted data. Moreover, extensive experiments are conducted to verify the superiority of our model. Compared to the state-of-the-art multi-task models, the proposed FMC-MTL model demonstrates remarkable robustness to the contaminated data.

Facebook Pagelike Widget

Who’s Online

Profile picture of Klit Winters
Profile picture of Brix Stanley
Profile picture of Ruiz Drake
Profile picture of Corneliussen Rosenkilde
Profile picture of Therkildsen Vaughan
Profile picture of Rafferty Pittman
Profile picture of Nunez Lee
Profile picture of Bryan Johannsen
Profile picture of Coffey Han
Profile picture of Rojas Pedersen
Profile picture of Mcpherson Dahl
Profile picture of Brewer Wise
Profile picture of Adair Aldridge
Profile picture of Buchanan Harrell
Profile picture of Lindgren Ralston