Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Ward Ogden posted an update 1 week, 4 days ago

    Dendritic cells (DCs) play a key role in shaping T cell responses. To do this, DCs must be able to migrate to the site of the infection and the lymph nodes to prime T cells and initiate the appropriate immune response. Integrins such as β

    integrin play a key role in leukocyte adhesion, migration, and cell activation. However, the role of β

    integrin in DC migration and function in the context of infection-induced inflammation in the gut is not well understood. This study looked at the role of β

    integrin in DC migration and function during infection with the nematode worm Trichuris muris. Itgb2

    mice lacking functional β

    integrin and WT littermate controls were infected with T. muris and the response to infection and kinetics of the DC response was assessed.

    In infection, the lack of functional β

    integrin significantly reduced DC migration to the site of infection but not the lymph nodes. The lack of functional β

    integrin did not negatively impact T cell activation in response to T. muris infection.

    This data suggests that β

    integrins are important in DC recruitment to the infection site potentially impacting the initiation of innate immunity but is dispensible for DC migration to lymph nodes and T cell priming in the context of T. muris infection.

    This data suggests that β2 integrins are important in DC recruitment to the infection site potentially impacting the initiation of innate immunity but is dispensible for DC migration to lymph nodes and T cell priming in the context of T. muris infection.

    The type VI protein secretion system (T6SS) is important in diverse cellular processes in Gram-negative bacteria, including interactions with other bacteria and with eukaryotic hosts. In this study we analyze the evolution of the T6SS in the genus Xanthomonas and evaluate its importance of the T6SS for virulence and in vitro motility in Xanthomonas phaseoli pv. manihotis (Xpm), the causal agent of bacterial blight in cassava (Manihot esculenta). We delineate the organization of the T6SS gene clusters in Xanthomonas and then characterize proteins of this secretion system in Xpm strain CIO151.

    We describe the presence of three different clusters in the genus Xanthomonas that vary in their organization and degree of synteny between species. Using a gene knockout strategy, we also found that vgrG and hcp are required for maximal aggressiveness of Xpm on cassava plants while clpV is important for both motility and maximal aggressiveness.

    We characterized the T6SS in 15 different strains in Xanthomonas and ouassava interaction and the T6SS organization in the genus Xanthomonas.

    The aim was to determine the potential association of the gut microbiota composition, especially the abundance of Actinobacteria, as well as the differentiation of functional and resistance genes with age (young adults vs elderly subjects) in China.

    The patterns of relative abundance of all bacteria isolated from fecal samples differed between young adults and elderly subjects, but the alpha diversity (Chao1 P = 0.370, Shannon P = 0.560 and Simpson P = 0.270) and beta diversity (ANOSIM R = 0.031, P = 0.226) were not significantly different. There were 3 Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways (carbon metabolism, inositol phosphate metabolism, and sesquiterpenoid and triterpenoid biosynthesis) and 7 antibiotic resistant genes (ARGs) (macrolide lincosamide-streptogramin B (MLSB), tetracycline, aminoglycoside, sulfonamide, fosmidomycin, lincomycin, and vancomycin) that showed significant differences between the 2 groups (all P < 0.05). The abundance of Actinomycetes was enriched (about 2.4-fold) in young adults. Bifidobacteria dominated in both young adults and elderly subjects, with overall higher abundances in young adults (P > 0.05). Only the Bifidobacterium_dentium species showed significant differences between the 2 groups (P = 0.013), with a higher abundance in elderly subjects but absent in young adults.

    The present study revealed that there were 3 KEGG metabolic pathways and 7 ARGs as well as enhanced Bifidobacterium_dentium species abundance in elderly compared to young subjects.

    The present study revealed that there were 3 KEGG metabolic pathways and 7 ARGs as well as enhanced Bifidobacterium_dentium species abundance in elderly compared to young subjects.

    Alfalfa (Medicago sativa L.) is a perennial legume extensively planted throughout the world as a high nutritive value livestock forage. Flowering time is an important agronomic trait that contributes to the production of alfalfa hay and seeds. However, the underlying molecular mechanisms of flowering time regulation in alfalfa are not well understood.

    In this study, an early-flowering alfalfa genotype 80 and a late-flowering alfalfa genotype 195 were characterized for the flowering phenotype. Our analysis revealed that the lower jasmonate (JA) content in new leaves and the downregulation of JA biosynthetic genes (i.e. lipoxygenase, the 12-oxophytodienoate reductase-like protein, and salicylic acid carboxyl methyltransferase) may play essential roles in the early-flowering phenotype of genotype 80. Further research indicated that genes encode pathogenesis-related proteins [e.g. leucine rich repeat (LRR) family proteins, receptor-like proteins, and toll-interleukin-like receptor (TIR)-nucleotide-binding sittimizing this important trait.

    Integrated phenotypical, physiological, and transcriptomic analyses demonstrate that hormone biosynthesis and signaling pathways, pathogenesis-related genes, signaling receptor kinase family genes, secondary metabolism genes, and proteasome degradation pathway genes are responsible for the early flowering phenotype in alfalfa. This will provide new insights into future studies of flowering time in alfalfa and inform genetic improvement strategies for optimizing this important trait.

    During the last two decades research on animal filarial parasites, especially Onchocerca ochengi, infecting cattle in savanna areas of Africa revealed that O. ochengi as an animal model has biological features that are similar to those of O. volvulus, the aetiological agent of human onchocerciasis. There is, however, a paucity of biochemical, immunological and pathological data for O. ochengi. Galectins can be generated by parasites and their hosts. They are multifunctional molecules affecting the interaction between filarial parasites and their mammalian hosts including immune responses. This study characterized O. ochengi galectin, verified its immunologenicityand established its immune reactivity and that of Onchocerca volvulus galectin.

    The phylogenetic analysis showed the high degree of identity between the identified O. ochengi and the O. volvulus galectin-1 (ß-galactoside-binding protein-1) consisting only in one exchange of alanine for serine. selleck chemicals llc O. ochengi galectin induced IgG antibodies during 28 days after immunization of Wistar rats.

Facebook Pagelike Widget

Who’s Online

Profile picture of Ruiz Drake
Profile picture of Humphrey Hyllested
Profile picture of Hickey Ellington
Profile picture of Lundgren Holcomb
Profile picture of Madden Erichsen
Profile picture of Kolding Sander
Profile picture of Dalton Tran
Profile picture of Mendoza Cameron
Profile picture of Glenn Wentworth
Profile picture of Storm Kehoe