-
Have Bruus posted an update 6 days, 3 hours ago
12 nM and 2.91 nM, respectively, comparable to other state-of-the-art μCE-LIF instruments. This benchtop system is amenable to a variety of detectors, including a photomultiplier tube, a silicon photomultiplier, or a spectrometer, and currently employs a spectrometer for facile multi-wavelength detection. Furthermore, the microdevice is easily exchanged to fit the desired application of the system, and optical components within the central filter cube can be easily replaced to target alternative fluorescent dyes. This work represents a significant step forward for the analysis of small organic molecules and biopolymers using μCE-LIF systems.This article describes a picosecond solid-state pulsed system, where the input pulse from the generator with a semiconductor opening switch (SOS) is amplified in power and decreases in duration by ferrite gyromagnetic lines. The lines operate in the Magnetic Compression Line (MCL) mode, which occurs at close values of the input pulse duration and the period of the oscillations generated in the line. The energy compression system contains three successive stages-MCL1-MCL3 lines. For an input pulse power of 6 GW (490 kV, 40 Ω) and a duration of 7 ns, pulses of 54 GW (1.62 MV, 48 Ω) and a duration of 170 ps have been achieved at the MCL3 output. Compared to the parameters of the input pulse, the voltage rise rate has been increased ∼130 times up to 14.8 MV/ns, and the power rise rate has been increased ∼350 times up to 0.7 TW/ns. A numerical simulation of the MCL3 line operation in which the maximum electric and magnetic fields are realized (>2 MV/cm and >500 kA/m, respectively) has been carried out. The inner structure of the process of power amplification during the electromagnetic wave passage along the line has been demonstrated. First, the front of the input pulse is sharpened, and then, after the excitation of the oscillations, the process of power amplification begins, followed by the pulse amplitude reaching the saturation region.Heat conduction through bonded metal-polymer interfaces often limits the overall heat transfer in electronic packaging, batteries, and heat recovery systems. To design the thermal circuit in such systems, it is essential to measure the thermal interfacial resistance (TIR) across ∼1 µm to 100 µm junctions. Previously reported TIR of metal-polymer junctions utilize ASTM E1530-based two-block systems that measure the TIR by applying pressure across the interface through external heating and cooling blocks. find more Here, we report a novel modification of the ASTM-E1530 technique that employs integrated heaters and sensors to provide an intrinsic TIR measurement of an adhesively bonded metal-polymer junction. We design the measurement technique using finite element simulations to either passively suppress or actively compensate the lateral heat diffusion through the polymer, which can minimize the systematic error to ≲5%. Through proof-of-concept experiments, we report the TIR of metal-polymer interfaces made from DuPont’s Pyralux double-side copper-clad laminates, commonly used in flexible printed circuit boards. Our TIR measurement errors are less then 10%. We highlight additional sources of errors due to non-idealities in the experiment and discuss possible ways to overcome them. Our measurement technique is also applicable to interfaces that are electrically insulating such as adhesively joined metal-metal junctions and sputter-coated or welded metal-polymer junctions. Overall, the technique is capable of measuring TIR ≳10-5 m2 KW-1 in bonded metal-polymer foils and can be tailored for in situ measurements in flexible electronics, circuit packaging, and other hybrid metal-polymer systems.This manuscript describes the development and operation of an apparatus for the measurement of steady-state and transient gas permeation through different types of solid materials with varying geometries. It is capable of operation from 293 K to 673 K and could theoretically be used with any non-corrosive gas or a mix of gases, although only hydrogen isotopes are used in the current study. A quadrupole mass spectrometer is used to measure permeation fluxes as low as 1011 molecules/s. This unique test setup allows for the simultaneous measurement of diffusivity, solubility, and permeability. Furthermore, varying the pressure in the fore-sample volume allows for tests of Sievert’s law and can give information on surface effects.When noise statistical characteristics of the system are unknown and there are outliers in the measurement information, the filtering accuracy of the strap-down inertial navigation system/geomagnetic navigation system (SINS/GNS) tightly integrated navigation system would decrease, and the filtering may diverge in severe cases. To solve this problem, a robust residual-based adaptive estimation Kalman filter (RRAEKF) method is proposed. In the RRAEKF method, the covariance matching technique is employed to detect whether the system is abnormal or not. When the system is judged to be abnormal, a weighted factor is constructed to identify and weight the wild value in the measurement information, eliminating the influence of the outliers on the filtering accuracy. To further improve the filtering accuracy of the integrated navigation system, a contraction factor is introduced to adaptively adjust the gain matrix of the filter algorithm, obtaining the optimal estimate of the state vector and covariance matrix. Simulation results demonstrate that compared with the standard extended Kalman filter method and residual-based adaptive estimation method, the space position errors of the SINS/GNS tightly integrated navigation system based on the proposed method are improved by 63.37% and 56.93%, respectively, in the case of time-varying noise and the presence of outliers.X-ray computed tomography has many applications in materials science and non-destructive testing. While the standard filtered back-projection reconstruction of the radiographic datasets is fast and simple, it typically fails in returning accurate results from missing or inconsistent projections. Among the alternative techniques that have been proposed to handle such data is the Direct Iterative REconstruction of Computed Tomography Trajectories (DIRECTT) algorithm. We describe a new approach to the algorithm, which significantly decreases the computational time while achieving a better reconstruction quality than that of other established algorithms.