-
Rouse Atkins posted an update 3 days, 10 hours ago
We have previously shown that the Kunitz-type serine protease inhibitor Spint1a, also named Hai1a, is required in the zebrafish embryonic epidermis to restrict the activity of the type II transmembrane serine protease (TTSP) Matriptase1a/St14a, thereby ensuring epidermal homeostasis. A closely related Kunitz-type inhibitor is Spint2/Hai2, which in mammals plays multiple developmental roles that are either redundant or non-redundant with those of Spint1. However, the molecular bases for these non-redundancies are not fully understood. Here, we study spint2 during zebrafish development. It is co-expressed with spint1a in multiple embryonic epithelia, including the outer/peridermal layer of the epidermis. However, unlike spint1a, spint2 expression is absent from the basal epidermal layer but present in hatching gland cells. Hatching gland cells derive from the mesendodermal prechordal plate, from where they undergo a thus far undescribed transit into, and coordinated sheet migration within, the interspace betweeth suppression. In contrast, no such genetic interaction was observed between Spint2 and the cell-cell adhesion molecule EpCAM, which instead interacts with Spint1a. 1-NM-PP1 Our data shed new light onto the mechanisms of hatching gland morphogenesis and hatching gland cell survival. In addition, they reveal developmental roles of Spint2 that are strikingly different from those of Spint1, most likely due to differences in the expression patterns and relevant target proteins.The participation of the peripheral opioid and cannabinoid endogenous systems in modulating muscle pain and inflammation has not been fully explored. Thus, the aim of this study was to investigate the involvement of these endogenous systems during muscular-tissue hyperalgesia induced by inflammation. Hyperalgesia was induced by carrageenan injection into the tibialis anterior muscles of male Wistar rats. We padronized an available Randal-Sellito test adaptation to evaluate nociceptive behavior elicited by mechanical insult in muscles. Western blot analysis was performed to evaluate the expression levels of opioid and cannabinoid receptors in the dorsal root ganglia. The non-selective opioid peptide receptor antagonist (naloxone) and the selective mu opioid receptor MOP (clocinnamox) and kappa opioid receptor KOP (nor-binaltorphimine) antagonists were able to intensify carrageenan-induced muscular hyperalgesia. On the other hand, the selective delta opioid receptor (DOP) antagonist (naltrindole) did not present any effect on nociceptive behavior. Moreover, the selective inhibitor of aminopeptidases (Bestatin) provoked considerable dose-dependent analgesia when intramuscularly injected into the hyperalgesic muscle. The CB1 receptor antagonist (AM251), but not the CB2 receptor antagonist (AM630), intensified muscle hyperalgesia. All irreversible inhibitors of anandamide hydrolase (MAFP), the inhibitor for monoacylglycerol lipase (JZL184) and the anandamide reuptake inhibitor (VDM11) decreased carrageenan-induced hyperalgesia in muscular tissue. Lastly, MOP, KOP and CB1 expression levels in DRG were baseline even after muscular injection with carrageenan. The endogenous opioid and cannabinoid systems participate in peripheral muscle pain control through the activation of MOP, KOP and CB1 receptors.Long undecoded transcript isoforms (LUTIs) represent a class of non-canonical mRNAs that downregulate gene expression through the combined act of transcriptional and translational repression. While single gene studies revealed important aspects of LUTI-based repression, how these features affect gene regulation on a global scale is unknown. Using transcript leader and direct RNA sequencing, here, we identify 74 LUTI candidates that are specifically induced in meiotic prophase. Translational repression of these candidates appears to be ubiquitous and is dependent on upstream open reading frames. However, LUTI-based transcriptional repression is variable. In only 50% of the cases, LUTI transcription causes downregulation of the protein-coding transcript isoform. Higher LUTI expression, enrichment of histone 3 lysine 36 trimethylation, and changes in nucleosome position are the strongest predictors of LUTI-based transcriptional repression. We conclude that LUTIs downregulate gene expression in a manner that integrates translational repression, chromatin state changes, and the magnitude of LUTI expression.Spatial transcriptional profiling provides gene expression information within the important anatomical context of tissue architecture. This approach is well suited to characterizing solid tumors, which develop within a complex landscape of malignant cells, immune cells, and stroma. In a single assay, spatial transcriptional profiling can interrogate the role of spatial relationships among these cell populations as well as reveal spatial patterns of relevant oncogenic genetic events. The broad utility of this approach is reflected in the array of strategies that have been developed for its implementation as well as in the recent commercial development of several profiling platforms. The flexibility to apply these technologies to both hypothesis-driven and discovery-driven studies allows widespread applicability in research settings. This review discusses available technologies for spatial transcriptional profiling and several applications for their use in cancer research.As the principal tissue for insulin-stimulated glucose disposal, skeletal muscle is a primary driver of whole-body glycemic control. Skeletal muscle also uniquely responds to muscle contraction or exercise with increased sensitivity to subsequent insulin stimulation. Insulin’s dominating control of glucose metabolism is orchestrated by complex and highly regulated signaling cascades that elicit diverse and unique effects on skeletal muscle. We discuss the discoveries that have led to our current understanding of how insulin promotes glucose uptake in muscle. We also touch upon insulin access to muscle, and insulin signaling toward glycogen, lipid, and protein metabolism. We draw from human and rodent studies in vivo, isolated muscle preparations, and muscle cell cultures to home in on the molecular, biophysical, and structural elements mediating these responses. Finally, we offer some perspective on molecular defects that potentially underlie the failure of muscle to take up glucose efficiently during obesity and type 2 diabetes.