Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Herskind Kjer posted an update 3 days, 9 hours ago

    Policymakers and urban designers strive to implement the increasing evidence about the positive association between urban green space (UGS) and health in policy. In Almere, The Netherlands, the Regenboogbuurt (“Rainbow Quarter”) neighbourhood is currently being revitalized. The research team was asked to deliver design principles for the improvement of UGS in this neighbourhood to benefit the health of its residents. However, robust studies that demonstrate what UGS criteria offer what particular benefit for what target group are scarce. This paper contributes to the need for more evidence-based UGS design by presenting the approach we used to develop UGS design principles for Regenboogbuurt. Demographic information, health statistics, residents’ opinions, and data about the current use of UGS were analysed to choose target groups and to formulate health benefit goals. We also developed a model for assessing the health benefits of UGS. For two age groups (those aged 10-24 and 40-60), stimulating physical health and social cohesion, respectively, were determined to be the goals of improving UGS. UGS design principles were then assessed based on the existing literature. These principles will be taken into account when this area is revitalized in 2021. Thus, there will be an opportunity to measure whether these design principles did indeed contribute to residents’ health.Starches were extracted from chickpea (C.P.), corn (C.S.), Turkish bean (T.B.), sweet potato (S.P.S.), and wheat starches (W.S.). These starches exhibited different amylose contents. The extracted starches were annealed in excess water and in germinated sorghum extract (GSE) (1.0 g starch/9 mL water). The α-amylase concentration in the GSE was 5.0 mg/10 mL. Annealing was done at 40, 50, and 60 °C for 30 or 60 min. The pasting properties of annealed starches were studied using Rapid Visco-Analyzer (RVA), in addition to the swelling power. These starches exhibited diverse pasting properties as evidenced by increased peak viscosity with annealing, where native starches exhibited peak viscosity as 2828, 2438, 1943, 2250, and 4601 cP for the C.P., C.S., T.B., W.S., and S.P.S., respectively, which increased to 3580, 2482, 2504, 2514, and 4787 cP, respectively. High amylose content did not play a major role on the pasting properties of the tested starches because sweet potato starch (S.P.S.) (22.4% amylose) exhibited the highest viscosity, whereas wheat starch (W.S.) (25% amylose) had the least. Therefore, the dual effects of granule structure and packing density, especially in the amorphous region, are determinant factors of the enzymatic digestion rate and product. Swelling power was found to be a valuable predictive tool of amylose content and pasting characteristics of the tested starches. Elacestrant The studied starches varied in their digestibility and displayed structural differences in the course of α-amylase digestion. Based on these findings, W.S. was designated the most susceptible among the starches and S.P.S. was the least. The most starch gel setback was observed for the legume starches, chickpeas, and Turkish beans (C.P. 2553 cP and T.B. 1172 cP). These results were discussed with regard to the underlying principles of swelling tests and pasting behavior of the tested starches. Therefore, GSE is an effortless economic technique that can be used for starch digestion (modification) at industrial scale.Treatment using light-activated photosensitizers (photodynamic therapy, PDT) has shown limited efficacy in pigmented melanoma, mainly due to the poor penetration of light in this tissue. Here, an optical clearing agent (OCA) was applied topically to a cutaneous melanoma model in mice shortly before PDT to increase the effective treatment depth by reducing the light scattering. This was used together with cellular and vascular-PDT, or a combination of both. The effect on tumor growth was measured by longitudinal ultrasound/photoacoustic imaging in vivo and by immunohistology after sacrifice. In a separate dorsal window chamber tumor model, angiographic optical coherence tomography (OCT) generated 3D tissue microvascular images, enabling direct in vivo assessment of treatment response. The optical clearing had minimal therapeutic effect on the in control, non-pigmented cutaneous melanomas but a statistically significant effect (p less then 0.05) in pigmented lesions for both single- and dual-photosensitizer treatment regimes. The latter enabled full-depth eradication of tumor tissue, demonstrated by the absence of S100 and Ki67 immunostaining. These studies are the first to demonstrate complete melanoma response to PDT in an immunocompromised model in vivo, with quantitative assessment of tumor volume and thickness, confirmed by (immuno) histological analyses, and with non-pigmented melanomas used as controls to clarify the critical role of melanin in the PDT response. The results indicate the potential of OCA-enhanced PDT for the treatment of pigmented lesions, including melanoma.While the use of topical drops for the delivery of drugs to the anterior of the eye is well accepted, it is far from efficient with as little as 5% of the drug instilled on the eye actually reaching the target tissue. The ability to prolong the residence time on the eye is desirable. Based on the acceptability of 2-hydroxyethyl methacrylate based polymers in contact lens applications, the current work focuses on the development of a poly(2-hydroxyethyl methacrylate (HEMA)) nanoparticle system. The particles were modified to allow for degradation and to permit mucoadhesion. Size and morphological analysis of the final polymer products showed that nano-sized, spherical particles were produced. FTIR spectra demonstrated that the nanoparticles comprised poly(HEMA) and that 3-(acrylamido)phenylboronic acid (3AAPBA), as a mucoadhesive, was successfully incorporated. Degradation of nanoparticles containing N,N’-bis(acryloyl)cystamine (BAC) after incubation with DL-dithiothreitol (DTT) was confirmed by a decrease in turbidity and through transmission electron microscopy (TEM). Nanoparticle mucoadhesion was shown through an in-vitro zeta potential analysis.

Facebook Pagelike Widget

Who’s Online

Profile picture of Sahin Ejlersen
Profile picture of McKnight Dillon
Profile picture of Davies Wang
Profile picture of Montgomery Foldager
Profile picture of Kaufman Palm
Profile picture of Terry Yilmaz
Profile picture of McDonald Velez
Profile picture of Henry Herndon
Profile picture of Franklin Nguyen
Profile picture of Wilhelmsen Dorsey
Profile picture of Buchanan Gentry
Profile picture of Phillips Lee
Profile picture of McIntyre Mohr
Profile picture of Norman Glud
Profile picture of Bruce Kerr