Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Fowler Archer posted an update 3 days, 12 hours ago

    With the help of the matrix analysis technique and the composition of binary relations, we propose a new and original method to deal with the convergence problem of PGSSM, and further establish a spanning tree condition for asynchronous tracking control. Finally, the validity of the theoretical findings is verified through several numerical examples.This study focuses on an adaptive fault-tolerant boundary control (BC) for a flexible string (FS) in the presence of unknown external disturbances, dead zone, and actuator fault. To tackle these issues, by employing some transformations, a part of the unknown dead zone and external disturbance can be regarded as a composite disturbance. Subsequently, an adaptive fault-tolerant BC is developed by utilizing strict formula derivations to compensate for unknown composite disturbance, dead zone, and actuator fault in the FS system. Under the proposed control strategy, the closed-loop system proves to be uniformly ultimately bounded, and the vibration amplitude is guaranteed to converge ultimately to a small compact set by choosing suitable design parameters. Finally, a numerical simulation is performed to demonstrate the control performance of the proposed scheme.This study investigates a simple design method of the robust state/fault estimation and fault-tolerant control (FTC) of discrete-time Takagi-Sugeno (T-S) fuzzy systems. To avoid the corruption of the fault signal on state estimation, a novel smoothing signal model of fault signal is embedded in the T-S fuzzy model for the robust H∞ state/fault estimation of the discrete-time nonlinear system with external disturbance by the traditional fuzzy observer. When the component and sensor faults are generated from different fault sources, two smoothing signal models for component and sensor faults are both embedded in the T-S fuzzy system for robust state/fault estimation. Since the nonsingular smoothing signal model and T-S fuzzy model are augmented together for signal reconstruction, the traditional fuzzy Luenberger-type observer can be employed to robustly estimate state/fault signal simultaneously from the H∞ estimation perspective. By utilizing the estimated state and fault signal, a traditional H∞ observer-based controller is also introduced for the FTC with powerful disturbance attenuation capability of the effect caused by the smoothing model error and external disturbance. Moreover, the robust H∞ observer-based FTC design is transformed into a linear matrix inequality (LMI) -constrained optimization problem by the proposed two-step design procedure. With the help of LMI TOOLBOX in MATLAB, we can easily design the fuzzy Luenberger-type observer for efficient robust H∞ state/fault estimation and solve the H∞ observer-based FTC design problem of discrete nonlinear systems. Two simulation examples are given to validate the performance of state/fault estimation and FTC of the proposed methods.\enlargethispage-8pt.In this article, an adaptive sliding-mode control scheme is developed for a class of uncertain quarter vehicle active suspension systems with time-varying vertical displacement and speed constraints, in which the input saturation is considered. The integral terminal SMC is adopted to improve convergence accuracy and avoid singular problems. In addition, neural networks are used to model unknown terms in the system and the backstepping technique is taken into account to design the actual controller. To guarantee that the time-varying state constraints are not violated, the corresponding Barrier Lyapunov functions are constructed. Selleck GX15-070 At the same time, a continuous differentiable asymmetric saturation model is developed to improve the stability of the system. Then, the Lyapunov stability theory is used to verify that all signals of the resulting system are semi globally uniformly ultimately bounded, time-varying state constraints are not violated, and error variables can converge to the small neighborhood of 0. Finally, results of the simulation of the designed control strategy are given to further prove the effectiveness.Topology identification of complex networks is an important and meaningful research direction. In recent years, the topology identification method based on adaptive synchronization has been developed rapidly. However, a critical shortcoming of this method is that inner synchronization of a network breaks the precondition of linear independence and leads to the failure of topology identification. Hence, how to identify the network topology when possible inner synchronization occurs within the network has been a challenging research issue. To solve this problem, this article proposes improved topology identification methods by regulating the original network to synchronize with an auxiliary network composed of isolated chaotic exosystems. The proposed methods do not require the sophisticated assumption of linear independence. The topology identification observers incorporating a series of isolated chaotic exosignals can accurately identify the network structure. Finally, numerical simulations show that the proposed methods are effective to identify the structure of a network even with large weights of edges and abundant connections between nodes.This article proposes a finite-time adaptive containment control scheme for a class of uncertain nonlinear multiagent systems subject to mismatched disturbances and actuator failures. The dynamic surface control technique and adding a power integrator technique are modified to develop the distributed finite-time adaptive containment algorithm, which shows lower computational complexity. In order to overcome the difficulty from the mismatched uncertainties, the disturbance observers are constructed based on the backstepping technique. Moreover, the uncertain actuator faults, including loss of effectiveness model and lock-in-place model, are considered and compensated by the proposed adaptive control scheme in this article. According to the Lyapunov stability theory, it is demonstrated that the containment errors are practically finite-time stable in the presence of actuator faults. Finally, a simulation example is conducted to show the effectiveness of the proposed theoretical results.

Facebook Pagelike Widget

Who’s Online

Profile picture of Johnsen Tranberg
Profile picture of Conrad Jonasson
Profile picture of Salomonsen Wheeler
Profile picture of Maher Fitzsimmons
Profile picture of Hsu Bonde
Profile picture of Mckinney Whitfield
Profile picture of Matthiesen Lassiter
Profile picture of Stanton Mikkelsen
Profile picture of Cole Edwards
Profile picture of Ellison Valenzuela
Profile picture of Skovbjerg Cardenas
Profile picture of McKee Shore
Profile picture of Faircloth Tyson