Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Booth Melvin posted an update 2 days, 18 hours ago

    The overall theme that emerged surrounding essential triage components was a perceived conflict between individualized care and maintaining systems and processes. This theme consisted of 4 (a) must ask, (b) actions of triage, (c) relevant but not urgent for triage, and (d) not perceived as relevant.

    This study identified the perceptions of emergency nurses surrounding the urgency of triage components in the emergency department. Emergency nurses perceived some assessments as essential to determining “sick versus not sick,” and other triage components were able to be delayed, streamlining the triage process.

    This study identified the perceptions of emergency nurses surrounding the urgency of triage components in the emergency department. Emergency nurses perceived some assessments as essential to determining “sick versus not sick,” and other triage components were able to be delayed, streamlining the triage process.Separation under the influence of magnetic field has been widely explored to tackle environmental issues related to centrifuging and filtration. In this work, activated carbon produced from pomegranate husk (PHAC) using dual stage chemical activation was magnetized with iron salts and used for adsorption of 4-chlorophenol (4CP) from the synthetic wastewater. Adsorption experiments were conducted in batch mode to determine the removal efficiency of magnetized activated carbon pomegranate husk (MPHAC) as a function of initial 4CP concentration, solution pH, MPHAC dose, contact time, ionic strength, and temperature. The rough surface of MPHAC containing pores on the surface had a total pore volume of 0.623 cm3/g with a surface area of 1168 m2/g. The 4CP adsorption was highly dependent on ionic strength, solution pH, and temperature; the equilibrium was reached in 60 min of contact time. Kinetic models and equilibrium isotherms were employed to assess the fitness of adsorption data; results were fitted best with the Liu model giving maximum adsorption capacities of 446.89 ± 20.75 and 183.64 ± 17.85 mg/g for 1 and 2 g/L of MPHAC, respectively. For the investigation of the adsorption kinetics, Avrami fractionary-order model showed the best fit of the experimental data compared to other kinetic models.To elucidate how high dissolved oxygen (DO) favors the startup of nitritation with aerobic granular sludge, two granular reactors were operated under low (1-2 mg O2·L-1) and high DO (3-5 mg O2·L-1) conditions with similar effluent ammonium concentrations (>20 mg N·L-1). The results showed that though nitritation with an average nitrite accumulation ratio of above 95% was finally achieved in both reactors, a five-fold start-up time (eleven weeks) was required for the low DO reactor compared to the high DO reactor. Moreover, the nitritation performance was positively correlated with the extent of nitrifiers stratification in granules. The faster startup of nitritation under high DO conditions mainly resulted from the faster formation of well-stratified nitrifiers, with ammonium oxidizing bacteria (AOB) dominating granule surface. High DO operation combined with sufficient ammonium supply ensured the faster growth of AOB, which should provide a competitive advantage to AOB in competing for habitable space (i.e., granule surface). Besides, the lower porosity, larger size, and more active extracellular polymeric substances (particularly proteins) production of granules was observed under the high DO condition. Overall, these findings supported the proposition that the switch from mixed to stratified distribution of nitrifiers in granule was primarily driven by their competition for habitable space rather than by oxygen-limitation.Pollution of natural water and even source water with pharmaceuticals is problematic worldwide and raises concern about the possibility of disinfection byproduct (DBP) formation during subsequent water treatment. In this study, the formation of DBPs, especially dichloroacetamide (DCAcAm), was investigated during chlorination and chloramination of tetracyclines, which are a class of broad-spectrum antibiotics. DBPs including DCAcAm were formed during chlorination and chloramination of tetracycline (TC). Although the concentrations and theoretical cytotoxicity of the DBPs formed from TC were affected by the contact time, disinfectant dose, and pH, DCAcAm was the main contributor determining the yields and cytotoxicity of the measured DBPs. The DCAcAm yields from four tetracycline antibiotics ranged from 0.43% to 54.26% for chlorination. For chloramination, the DCAcAm yields reached 44.57%, and the nitrogen in DCAcAm mainly came from tetracycline antibiotics rather than chloramines. ClO2 pre-oxidation and UV photolysis decreased DCAcAm formation during chlorination and chloramination of TC. The high yields observed in this study suggest that tetracycline antibiotics are possible precursors of DCAcAm.Many microbial species causing infectious disease all over the world became a social burden and creating threat among community. selleck These microbes possess long lifetime, enhancing mortality and morbidity rate in affected organisms. In this condition, the treatment was ineffective and more chances of spreading of infection into other organisms. Hence, it is necessary to initiate infection control efforts and prevention activities against multidrug resistant microbes, to reduce the death rate of people. Seriously concerning towards this problem progress was shown in developing significant drugs with least side effects. Emergence of nanoparticles and its novelty showed effective role in targeting and destructing microbes well. Further, many research works have shown nanocomposites developed from nanoparticles coupled with other nanoparticles, polymers, carbon material acted as an exotic substance against microbes causing severe loss. However, metal and metal oxide nanocomposites have gained interest due to its small size and enhancing the surface contact with bacteria, producing damage to it. The bactericidal mechanism of metal and metal oxide nanocomposites involve in the production of reactive oxygen species which includes superoxide radical anions, hydrogen peroxide anions and hydrogen peroxide which interact with the cell wall of bacteria causing damage to the cell membrane in turn inhibiting the further growth of cell with leakage of internal cellular components, leading to death of bacteria. This review provides the detailed view on antibacterial activity of metal and metal oxide nanocomposite which possessed novelty due to its physiochemical changes.

Facebook Pagelike Widget

Who’s Online

Profile picture of Harris Hedrick
Profile picture of Parrott Christoffersen
Profile picture of Barrera Buch
Profile picture of Ellis Lehmann
Profile picture of Pierce Haynes
Profile picture of Warner Meredith
Profile picture of Porter Skovbjerg