-
Burgess Gustafsson posted an update 2 days, 21 hours ago
Choristoneura fumiferana (Clemens) (Lepidoptera Tortricidae) is a defoliating pest in Canada and the northeastern United States. Given its important ecological and economic effects in affected regions, several direct management techniques have been developed, including the application of the insect growth regulator tebufenozide (Mimic™, RH-5992) to feeding larval stages. While the effectiveness of tebufenozide, in this capacity, is understood, management programs of other lepidopteran pests have demonstrated the effectiveness of tebufenozide application when utilized against other life stages. Here, we investigated the toxicity of topically-applied tebufenozide to C. fumiferana pupae to determine if such a strategy could be feasible. We observed significant dose-dependent decreases in the likelihood of adult emergence, increases in the likelihood of pupal death or adult deformity at eclosion, and significant decreases in mean adult longevity. Estimated LD 50 (lethal dose) values for adult male and female C. fumiferana treated as pupae ≤ 4 days after pupation were approximately 1-3 and 2-3.5% ACI (active commercial ingredient) respectively. Estimated L-SD (lethal-sublethal) 50 doses for adult male and female C. fumiferana treated as pupae ≤4 days after pupation were less then 1, and less then 2% ACI, respectively. Mating success was also significantly lower in mating pairs containing adults treated as pupae. Although, the amounts required to cause appreciable pupal mortality were much higher than those currently applied operationally in the C. fumiferana system, our study illustrates the potential of tebufenozide to utilized against additional developmental stages in other lepidopteran pests.Multi-DOF movement actuators are widely used in industry, mainly in the fields of bionics and precision machining. With the non-stop improvement of modern-day industry, the requirements for the precision, integration and flexibility of multi-degree-of-freedom motion actuators in the industrial field have progressively increased. This paper presents a novel electromagnetic-piezoelectric hybrid driven three-degree-of-freedom motor. The driving method of the hybrid drive motor can be divided into electromagnetic driving and piezoelectric driving. The motor structure and working principle are analyzed. The structural parameters are obtained by modal analysis of the stators and rotor. The rationality of the stator structure is proved by using the transient analysis of the piezoelectric stators. The magnetic field characteristics of the motor are analyzed by both analytical method and the finite element method. The contact pressure and displacement between the piezoelectric stator and the rotor are analyzed by the analytical method. A motor drive model is established, which provides the basis for motor optimization design and control. Finally, a motor prototype and its test platform were built, and the experimental results are presented to verify the rationality of the motor design.In chronic kidney disease (CKD), impaired kidney function results in accumulation of uremic toxins, which exert deleterious biological effects and contribute to inflammation and cardiovascular morbidity and mortality. Protein-bound uremic toxins (PBUTs), such as p-cresyl sulfate, indoxyl sulfate and indole-3-acetic acid, originate from phenolic and indolic compounds, which are end products of gut bacterial metabolization of aromatic amino acids (AAA). This study investigates gut microbial composition at different CKD stages by isolating, identifying and quantifying PBUT precursor-generating bacteria. Fecal DNA extracts from 14 controls and 138 CKD patients were used to quantify total bacterial number and 11 bacterial taxa with qPCR. Moreover, isolated bacteria from CKD 1 and CKD 5 fecal samples were cultured in broth medium supplemented with AAA under aerobic and anaerobic conditions, and classified as PBUT precursor-generators based on their generation capacity of phenolic and indolic compounds, measured with U(H)PLC. In total, 148 different fecal bacterial species were isolated, of which 92 were PBUT precursor-generators. These bacterial species can be a potential target for reducing PBUT plasma levels in CKD. qPCR indicated lower abundance of short chain fatty acid-generating bacteria, Bifidobacterium spp. and Streptococcus spp., and higher Enterobacteriaceae and E. coli with impaired kidney function, confirming an altered gut microbial composition in CKD.The synthesis of nanoparticles by combinatorial sputtering in ionic liquids is a versatile approach for discovering new materials. Whereas the influence on nanoparticle formation of different pure ionic liquids has been addressed, the influence of (I) dilution of ionic liquid with solvents and (II) different mixtures of ionic liquids is less known. click here Therefore, mixtures of the ionic liquid [Bmim][(Tf)2N] with the organic solvent anisole and other ionic liquids ([Bmim][(Pf)2N], [BmPyr][(Tf)2N]) were used as liquid substrates for the sputter synthesis of nanoparticles, in order to investigate the influence of these mixtures on the size of the nanoparticles. First, mixtures of anisole with a suspension of sputtered Ag nanoparticles in [Bmim][(Tf)2N] were prepared in different volumetric steps to investigate if the stabilization of the NPs by the ionic liquid could be reduced by the solvent. However, a continuous reduction in nanoparticle size and amount with increasing anisole volume was observed. Second, Ag, Au and Cu were sputtered on ionic liquid mixtures. Ag nanoparticles in [Bmim][(Tf)2N]/[Bmim][(Pf)2N] mixtures showed a decrease in size with the increasing volumetric fraction of [Bmim][(Tf)2N], whereas all nanoparticles obtained from [Bmim][(Tf)2N]/[BmPyr][(Tf)2N] mixtures showed increasing size and broadening of the size distribution. Maximum sizes of sputtered Ag and Au NPs were reached in mixtures of [Bmim][(Tf)2N] with 20 vol.% and 40 vol.% [BmPyr][(Tf)2N]. The results indicate that ionic liquid mixtures with different portions of cations and anions have the capability of influencing the ionic liquid stabilization characteristics with respect to, e.g., nanoparticle size and size distribution.