Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • McCartney Wilkerson posted an update 2 days, 19 hours ago

    We create laterally large and low-disorder GaAs quantum-well-based quantum dots that act as small two-dimensional electron systems. We monitor tunneling of single electrons to the dots by means of capacitance measurements and identify single-electron capacitance peaks in the addition spectrum from occupancies of one up to thousands of electrons. The data show two remarkable phenomena in the Landau level filling factor range ν=2 to ν=5 in selective probing of the edge states of the dot (i) Coulomb blockade peaks arise from the entrance of two electrons rather than one; (ii) at and near ν=5/2 and at fixed gate voltage, these double-height peaks appear uniformly in a magnetic field with a flux periodicity of h/2e, but they group into pairs at other filling factors.Spin transport via magnon diffusion in magnetic insulators is important for a broad range of spin-based phenomena and devices. However, the absence of the magnon equivalent of an electric force is a bottleneck. In this Letter, we demonstrate the controlled generation of magnon drift currents in heterostructures of yttrium iron garnet and platinum. By performing electrical injection and detection of incoherent magnons, we find magnon drift currents that stem from the interfacial Dzyaloshinskii-Moriya interaction. We can further control the magnon drift by the orientation of the magnetic field. The drift current changes the magnon propagation length by up to ±6% relative to diffusion. We generalize the magnonic spin transport theory to include a finite drift velocity resulting from any inversion asymmetric interaction and obtain results consistent with our experiments.Direct proton-knockout reactions of ^55Sc at ∼220  MeV/nucleon were studied at the RIKEN Radioactive Isotope Beam Factory. learn more Populated states of ^54Ca were investigated through γ-ray and invariant-mass spectroscopy. Level energies were calculated from the nuclear shell model employing a phenomenological internucleon interaction. Theoretical cross sections to states were calculated from distorted-wave impulse approximation estimates multiplied by the shell model spectroscopic factors, which describe the wave function overlap of the ^55Sc ground state with states in ^54Ca. Despite the calculations showing a significant amplitude of excited neutron configurations in the ground-state of ^55Sc, valence proton removals populated predominantly the ground state of ^54Ca. This counterintuitive result is attributed to pairing effects leading to a dominance of the ground-state spectroscopic factor. Owing to the ubiquity of the pairing interaction, this argument should be generally applicable to direct knockout reactions from odd-even to even-even nuclei.We study a reference model in theoretical ecology, the disordered Lotka-Volterra model for ecological communities, in the presence of finite demographic noise. Our theoretical analysis, valid for symmetric interactions, shows that for sufficiently heterogeneous interactions and low demographic noise the system displays a multiple equilibria phase, which we fully characterize. In particular, we show that in this phase the number of locally stable equilibria is exponential in the number of species. Upon further decreasing the demographic noise, we unveil the presence of a second transition like the so-called “Gardner” transition to a marginally stable phase similar to that observed in the jamming of amorphous materials. We confirm and complement our analytical results by numerical simulations. Furthermore, we extend their relevance by showing that they hold for other interacting random dynamical systems such as the random replicant model. Finally, we discuss their extension to the case of asymmetric couplings.We perform the three-dimensional lattice simulation of the magnetic field and gravitational wave productions from bubble collisions during the first-order electroweak phase transition. Except for the gravitational wave, the power-law spectrum of the magnetic field strength is numerically calculated for the first time, which is of a broken power-law spectrum B_ξ∝f^0.91 for the low-frequency region of ff_⋆ in the thin-wall limit, with the peak frequency being f_⋆∼5  Hz at the phase transition temperature 100 GeV. When the hydrodynamics is taken into account, the generated magnetic field strength can reach B_ξ∼10^-7  G at a correlation length ξ∼10^-7  pc, which may seed the large scale magnetic fields. Our study shows that the measurements of cosmic magnetic field strength and gravitational waves are complementary to probe new physics admitting electroweak phase transition.We present a systematic treatment of scattering processes for quantum systems whose time evolution is discrete. We define and show some general properties of the scattering operator, in particular the conservation of quasienergy which is defined only modulo 2π. Then we develop two perturbative techniques for the power series expansion of the scattering operator, the first one analogous to the iterative solution of the Lippmann-Schwinger equation, the second one to the Dyson series of perturbative quantum field theory. We use this formalism to compare the scattering amplitudes of a continuous-time model and of the corresponding discretized one. We give a rigorous assessment of the comparison for the case of bounded free Hamiltonian, as in a lattice theory with a bounded number of particles. Our framework can be applied to a wide class of quantum simulators, like quantum walks and quantum cellular automata. As a case study, we analyze the scattering properties of a one-dimensional cellular automaton with locally interacting fermions.Three experiments explored the effects of abrupt changes in stimulus properties on streaming dynamics. Listeners monitored 20-s-long low- and high-frequency (LHL-) tone sequences and reported the number of streams heard throughout. Experiments 1 and 2 used pure tones and examined the effects of changing triplet base frequency and level, respectively. Abrupt changes in base frequency (±3-12 semitones) caused significant magnitude-related falls in segregation (resetting), regardless of transition direction, but an asymmetry occurred for changes in level (±12 dB). Rising-level transitions usually decreased segregation significantly, whereas falling-level transitions had little or no effect. Experiment 3 used pure tones (unmodulated) and narrowly spaced (±25 Hz) tone pairs (dyads); the two evoke similar excitation patterns, but dyads are strongly modulated with a distinctive timbre. Dyad-only sequences induced a strongly segregated percept, limiting scope for further build-up. Alternation between groups of pure tones and dyads produced large, asymmetric changes in streaming.

Facebook Pagelike Widget

Who’s Online

Profile picture of Buchanan Boje
Profile picture of Bork Jeppesen
Profile picture of Werner McIntyre
Profile picture of Grau Owen
Profile picture of Svenstrup Samuelsen
Profile picture of Dohn Osborne
Profile picture of Hendrix Vang
Profile picture of Bruce Kerr
Profile picture of Marcussen Chan