-
Hamrick Murray posted an update 2 days, 15 hours ago
(2) Neither α-BTX nor MLA abolished the suppressive effects of GTS-21 on IFN-γ and IL-17 release from OVA-activated DO11.10 spleen cells. (3) GTS-21 significantly suppressed OVA-induced APC-dependent CD4+ T cell differentiation into Tregs. Neither MLA nor mecamylamine, a non-specific nAChR antagonist, abolished the suppressive effect of GTS-21 on Treg differentiation. These results suggest that α7 nAChRs on APCs involved in cytokine synthesis and T cell differentiation are insensitive to the conventional α7 nAChR antagonists, α-BTX and MLA, and that α7 nAChRs on APCs differ pharmacologically from those in neurons. Dendritic cells (DCs) represent one of the most important biological tools for cellular immunotherapy purposes. There are an increasing number of phase I and II studies, where regulatory or tolerogenic DCs (TolDCs) are utilized as negative vaccines, with the aim of inducing tolerogenic outcomes in patients with various autoimmune or chronic-inflammatory diseases, as well as in transplant settings. The induction of tolerogenic properties in DCs can be achieved by altering their activation state toward expression of immunosuppressive elements and/or by achieving resistance to maturation, which leads to insufficient co-stimulatory signal delivery and inability to efficiently present antigens. In the past, one of the most efficient ways to induce DC tolerance has been the application of selected pharmacological agents which actively induce a tolerogenic transcription program or inhibit major pro-inflammatory transcription factors such as Nf-κB. Important examples include immunosuppressants such as different corticosteroids, vitamin D3, rapamycin and others. The quality of TolDCs induced by different approaches is becoming a vital issue and recent evidence suggests substantial heterogeneity between variously-generated TolDCs as evidenced by their transcriptomic profile and function. The possibility of various “flavors” of TolDCs encourages future research in discovery of Tol-DC inducing agents to enrich various ways of DC manipulation. This would enable a broader range of tools to manipulate DC toward specific characteristics desirable in different disease settings. In recent years, several novel small molecules have been identified with the capacity to promote DC tolerogenic characteristics. In this review, we will present and discuss these novel findings and also highlight novel understandings of tolerogenic mechanisms by which DC tolerogenicity is induced by already established agents. BACKGROUND Recent studies have demonstrated that immune-associated genes (IAGs) play an important role in the occurrence and progression of clear renal clear cell carcinoma (ccRCC). Novel biomarkers and a reliable prognostic prediction model for ccRCC patients are still limited. The objective of this study was to develop a IAGs signature and validate its prognostic value in ccRCC using bioinformatic methods and publicly database. METHODS In the present study, we identified differentially expressed IAGs in ccRCC based on The Cancer Genome Atlas (TCGA) database. A prognostic IAGs risk model was further developed and its prognostic and predictive value was evaluated by survival analysis and nomogram. RESULTS A total of 681 differentially expressed IAGs were identified and seven IAGs (IFI30, WNT5A, IRF9, AGER, PLAUR, TEK, BID) were finally selected in a IAGs signature. Survival analysis revealed that high IAGs risk scores were significantly related to poor survival outcomes. The IAGs signature was demonstrated as an independent prognostic factor and closely related to the metastasis status of ccRCC. A nomogram with clinicopathologic characteristics and IAGs signature was also constructed to superiorly predict prognosis of ccRCC patients. CONCLUSIONS We identified seven IAGs as a potential signature for reflecting the prognosis of ccRCC based on TCGA database. Further clinical trials are needed to validate our observations and the mechanisms underlying the prognostic value of IAGs signature in ccRCC also deserve further experimental exploration. V.BACKGROUND Berberine (BBR) was reported to have immunoregulatory and anti-inflammatory properties. In this study, we investigated whether BBR could exert its effects on the development of experimental autoimmune uveitis (EAU), and if so, what was the underlying mechanism? METHODS EAU was induced in B10R.III mice by immunization with IRBP 161-180, followed by 100 mg/kg/d BBR intragastric administration. Disease severity was assessed by evaluation of clinical and histopathological scores. Blood-retinal barrier (BRB) breakdown was tested by Evans blue. Effector and regulatory T (Treg) cell balance was evaluated by quantitative real-time PCR and flow cytometry. Spleen transcriptome was characterized by RNA sequencing (RNA-seq). Gut microbiota composition was investigated by 16S rRNA analysis. RESULTS BBR treatment significantly blocked EAU as shown by the decrease of the clinical and histological scores, as well as the inhibition of BRB breakdown. The frequency of splenic Th1 and Th17 cells was decreased, whereas Treg cells were increased in the BBR-treated group. RNA-seq of the spleen revealed 476 differentially expressed genes (DEGs) between the EAU and EAU-BBR group. read more GO functional classification, as well as KEGG analysis demonstrated that BBR treatment markedly influences genes belonging to chromatin remodeling and immune-related pathways. Intervention with BBR modified the gut microbiome in EAU mice, increasing the number of bacteria with immunomodulatory capacity. Depletion of gut microbiota affected the efficacy of BBR on EAU. Moreover, the altered bacterial strains showed a significant correlation with the expression of histones. CONCLUSIONS BBR inhibited IRBP induced EAU, which was associated with a significant change in the spleen transcriptome and intestinal microbial composition. A key feature of type 2 diabetes (T2D) is that beta-cells of the pancreatic islets fail to release sufficient amounts of insulin to overcome peripheral insulin resistance. Glucose-stimulated insulin secretion (GSIS) is regulated by the activity of numerous neurotransmitters, hormones and paracrine factors that act by stimulating specific G protein-coupled receptors expressed by pancreatic beta-cells. Studies with both mouse and human islets suggest that acetylcholine (ACh) acts on beta-cell M3 muscarinic receptors (M3Rs) to promote GSIS. In mouse islets, beta-cell M3Rs are thought to be activated by ACh released from parasympathetic nerve endings. Interestingly, studies with human pancreatic islets suggest that ACh is synthesized, stored and released by alpha-cells, which, in human pancreatic islets, are intermingled with beta-cells. Independent of the source of pancreatic islet ACh, recent studies indicate that beta-cell M3Rs represent a potential target for drugs capable of promoting insulin release for therapeutic purposes.