Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Ulrich Morales posted an update 2 days, 6 hours ago

    Marine protected areas (MPAs) play a leading role in conserving and restoring marine environments. MPAs can benefit both marine populations within their boundaries and external populations owing to a net export of organisms (spillover). However, little is known about variation in performance within MPAs. For example, edge effects may degrade populations within MPAs close to their boundaries. Here we synthesize empirical estimates of 72 taxa of fish and invertebrates to explore spatial patterns across the borders of 27 no-take MPAs. We show that there is a prominent and consistent edge effect that extends approximately 1 km within the MPA, in which population sizes on the border are 60% smaller than those in the core area. Our analysis of cross-boundary population trends suggests that, globally, the smallest 64% of no-take MPAs (those of less than 10 km2 in area) may hold only about half (45-56%) of the population size that is implied by their area. MPAs with buffer zones did not display edge effects, suggesting that extending no-take areas beyond the target habitats and managing fishing activities around MPA borders are critical for boosting MPA performance.The YAP/TAZ transcriptional programme is not only a well-established driver of cancer progression and metastasis but also an important stimulator of tissue regeneration. Here we identified Cerebral cavernous malformations 3 (CCM3) as a regulator of mechanical cue-driven YAP/TAZ signalling, controlling both tumour progression and stem cell differentiation. We demonstrate that CCM3 localizes to focal adhesion sites in cancer-associated fibroblasts, where it regulates mechanotransduction and YAP/TAZ activation. Mechanistically, CCM3 and focal adhesion kinase (FAK) mutually compete for binding to paxillin to fine-tune FAK/Src/paxillin-driven mechanotransduction and YAP/TAZ activation. In mouse models of breast cancer, specific loss of CCM3 in cancer-associated fibroblasts leads to exacerbated tissue remodelling and force transmission to the matrix, resulting in reciprocal YAP/TAZ activation in the neighbouring tumour cells and dissemination of metastasis to distant organs. Similarly, CCM3 regulates the differentiation of mesenchymal stromal/stem cells. In conclusion, CCM3 is a gatekeeper in focal adhesions that controls mechanotransduction and YAP/TAZ signalling.Faba bean (Vicia faba L.) is a widely adapted and high-yielding legume cultivated for its protein-rich seeds1. mTOR inhibitor However, the seeds accumulate the pyrimidine glucosides vicine and convicine, which can cause haemolytic anaemia (favism) in 400 million genetically predisposed individuals2. Here, we use gene-to-metabolite correlations, gene mapping and genetic complementation to identify VC1 as a key enzyme in vicine and convicine biosynthesis. We demonstrate that VC1 has GTP cyclohydrolase II activity and that the purine GTP is a precursor of both vicine and convicine. Finally, we show that cultivars with low vicine and convicine levels carry an inactivating insertion in the coding sequence of VC1. Our results reveal an unexpected, purine rather than pyrimidine, biosynthetic origin for vicine and convicine and pave the way for the development of faba bean cultivars that are free of these anti-nutrients.Photosystem II (PSII) is a multisubunit pigment-protein complex and catalyses light-induced water oxidation, leading to the conversion of light energy into chemical energy and the release of dioxygen. We analysed the structures of two Psb28-bound PSII intermediates, Psb28-RC47 and Psb28-PSII, purified from a psbV-deletion strain of the thermophilic cyanobacterium Thermosynechococcus vulcanus, using cryo-electron microscopy. Both Psb28-RC47 and Psb28-PSII bind one Psb28, one Tsl0063 and an unknown subunit. Psb28 is located at the cytoplasmic surface of PSII and interacts with D1, D2 and CP47, whereas Tsl0063 is a transmembrane subunit and binds at the side of CP47/PsbH. Substantial structural perturbations are observed at the acceptor side, which result in conformational changes of the quinone (QB) and non-haem iron binding sites and thus may protect PSII from photodamage during assembly. These results provide a solid structural basis for understanding the assembly process of native PSII.Bidirectional root-shoot signalling is probably key in orchestrating stress responses and ensuring plant survival. Here, we show that Arabidopsis thaliana responses to microbial root commensals and light are interconnected along a microbiota-root-shoot axis. Microbiota and light manipulation experiments in a gnotobiotic plant system reveal that low photosynthetically active radiation perceived by leaves induces long-distance modulation of root bacterial communities but not fungal or oomycete communities. Reciprocally, microbial commensals alleviate plant growth deficiency under low photosynthetically active radiation. This growth rescue was associated with reduced microbiota-induced aboveground defence responses and altered resistance to foliar pathogens compared with the control light condition. Inspection of a set of A. thaliana mutants reveals that this microbiota- and light-dependent growth-defence trade-off is directly explained by belowground bacterial community composition and requires the host transcriptional regulator MYC2. Our work indicates that aboveground stress responses in plants can be modulated by signals from microbial root commensals.Complex antagonistic interactions between abscisic acid (ABA) and brassinosteroid (BR) signalling pathways have been widely documented. However, whether or how ABA interacts synergistically with BR in plants remains to be elucidated. Here, we report that low, but not high, concentration of ABA increases lamina joint inclination of rice seedling, which requires functional BR biosynthesis and signalling. Transcriptome analyses confirm that about 60% of low-concentration ABA early response genes can be regulated by BR in the same directions. ABA activates BR signal in a fast, limited and short-term manner and the BR-biosynthesis regulatory gene, OsGSR1, plays a key role during this process, whose expression is induced slightly by ABA through transcriptional factor ABI3. Moreover, the early short-term BR signal activation is also important for ABA-mediated salt stress tolerance. Intriguingly, the process and effect of short-term BR signal activation were covered by high concentration of ABA, implying adaptive mechanisms existed in plants to cope with varying degrees of stress.

Facebook Pagelike Widget

Who’s Online

Profile picture of Johnsen Tranberg
Profile picture of Beasley Carr
Profile picture of Ziegler McNeill
Profile picture of Hartvig Estes
Profile picture of Duran Haslund
Profile picture of Lewis Bendix
Profile picture of Conrad Jonasson
Profile picture of Salomonsen Wheeler
Profile picture of Maher Fitzsimmons
Profile picture of Hsu Bonde
Profile picture of Mckinney Whitfield
Profile picture of Matthiesen Lassiter