-
Thisted Vinther posted an update 1 day, 22 hours ago
Background Besides its well-known role as a peripheral chemical mediator of immune, vascular, and cellular responses, histamine plays major roles in the central nervous system, particularly in the mediation of arousal and cognition-enhancement. These central effects are mediated by the histamine-3 auto receptors, the modulation of which is thought to be beneficial for the treatment of disorders that impair cognition or manifest with excessive daytime sleepiness. Methods A database search of PubMed, Google Scholar, and clinicaltrials.gov was performed in June 2020. Full-text articles were screened and reviewed to provide an update on pitolisant and other histamine-3 receptor antagonists. Results A new class of drugs-histamine-3 receptor antagonists-has emerged with the approval of pitolisant for the treatment of narcolepsy with or without cataplexy. At the recommended dose, pitolisant is well tolerated and effective. It has also been evaluated for potential therapeutic benefit in Parkinson disease, epilepsy, attention deficit hyperactivity disorder, Alzheimer’s disease, and dementia. Limited studies have shown pitolisant to lack abuse potential which will be a major advantage over existing drug options for narcolepsy. Several histamine-3 receptor antagonists are currently in development for a variety of clinical indications. Conclusions Although limited clinical studies have been conducted on this new class of drugs, the reviewed literature showed promising results for future additions to the clinical indications of pitolisant, and the expansion of the list of approved drugs in this class for a variety of indications.Research indicates that children and adolescents gradually participate less in physical activity with age. Several factors are associated with children’s physical activity levels, such as motor performance, self-perception of athletic competence and motivation to physical activity. To gain a better understanding of the factors of importance for behavior related to an active lifestyle, the purpose of this study was to investigate the association between motor competence, physical self-perception and autonomous motivation and to examine to what extent this association may vary by sex. The sample consisted of 101 children, whose average age was 11.7 years (SD = 0.57), 53 boys and 48 girls. All subjects were measured on motor competence, physical self-perception and autonomous motivation for physical activity. The results indicate a low positive relationship between motor competence and physical self-perception for the entire sample and among girls. There is also a significant correlation between autonomous motivation and physical self-perception. No significant correlations were found between autonomous motivation and motor competence. The association between physical self-perception and autonomous motivation suggests that psychological factors play an important role in children’s participation in physical activity.Neurovascular coupling, also termed functional hyperemia, is one of the physiological key mechanisms to adjust blood flow in a neural tissue in response to functional activity. In the retina, increased neural activity, such as that induced by visual stimulation, leads to the dilatation of retinal arterioles, which is accompanied by an immediate increase in retinal and optic nerve head blood flow. According to the current scientific view, functional hyperemia ensures the adequate supply of nutrients and metabolites in response to the increased metabolic demand of the neural tissue. Although the molecular mechanisms behind neurovascular coupling are not yet fully elucidated, there is compelling evidence that this regulation is impaired in a wide variety of neurodegenerative and vascular diseases. In particular, it has been shown that the breakdown of the functional hyperemic response is an early event in patients with diabetes. There is compelling evidence that alterations in neurovascular coupling precede visible signs of diabetic retinopathy. Based on these observations, it has been hypothesized that a breakdown of functional hyperemia may contribute to the retinal complications of diabetes such as diabetic retinopathy or macular edema. The present review summarizes the current evidence of impaired neurovascular coupling in patients with diabetes. In this context, the molecular mechanisms of functional hyperemia in health and disease will be covered. Finally, we will also discuss how neurovascular coupling may in future be used to monitor disease progression or risk stratification.Textile reinforced concrete (TRC) has widely been used for strengthening work for deteriorated reinforced concrete (RC) structures. The structural strengthening often requires accelerated construction with the aid of precast or prefabricated elements. This study presents an innovative method to strengthen an RC slab-type element in flexure using a precast panel made of carbon TRC. A total of five RC slabs were fabricated to examine the flexural strengthening effect. Two of them were strengthened with the precast panel and grouting material and another set of two slabs was additionally strengthened by tensile steel reinforcement. The full-scale slab specimens were tested by a three-point bending test and the test results were compared with the theoretical solutions. The results revealed that the ultimate load of the specimens strengthened with the TRC panel increased by at least 1.5 times compared to that of the unstrengthened specimen. The application of the precast TRC panel and grouting material for the strengthening of a prototype RC structure verified its outstanding constructability.In the domain of human action recognition, existing works mainly focus on using RGB, depth, skeleton and infrared data for analysis. UK5099 While these methods have the benefit of being non-invasive, they can only be used within limited setups, are prone to issues such as occlusion and often need substantial computational resources. In this work, we address human action recognition through inertial sensor signals, which have a vast quantity of practical applications in fields such as sports analysis and human-machine interfaces. For that purpose, we propose a new learning framework built around a 1D-CNN architecture, which we validated by achieving very competitive results on the publicly available UTD-MHAD dataset. Moreover, the proposed method provides some answers to two of the greatest challenges currently faced by action recognition algorithms, which are (1) the recognition of high-level activities and (2) the reduction of their computational cost in order to make them accessible to embedded devices. Finally, this paper also investigates the tractability of the features throughout the proposed framework, both in time and duration, as we believe it could play an important role in future works in order to make the solution more intelligible, hardware-friendly and accurate.