Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Petersen Hawley posted an update 1 day, 20 hours ago

    Total embryo cell number was similar among groups. Although Day 15 conceptuses were longer following asynchronous transfer, only 50% of the asynchronous heifers yielded conceptuses, compared with 100% in the synchronous group. In conclusion, asynchrony between the developing embryo and the reproductive tract has a negative effect on embryo development.Nitrate (NO3-) fertilisers are commonly used to improve the yield and quality of most non-legume crops such as potato (Solanum tuberosum L.). Root cells absorb nitrate from the soil using plasma membrane-bound transporters. In this study, we overexpressed a putative nitrate transporter from potato (StNPF1.11) to study its effect on the level of tuber protein content in potato. At 10 weeks after planting, overexpression of StNPF1.11 increased the mean level of protein content of all n = 23 transformants by 42% compared with the wild-type control. The level of chlorophyll content in leaves (from upper and lower plant parts) also increased for several individuals at 10 weeks. Tuber yield (fresh) was not structurally impaired; however, the mean tuber dry matter content of the transformants was reduced by 3-8% at 19 weeks. At 19 weeks, an overall increase in protein content was not clearly observed. Throughout plant development, half of the transformants were taller than the control. A basic understanding of the mechanisms that regulate plant nitrogen uptake, transport and utilisation, enable the development of tools to improve both crop nutrition and crop quality that are needed to enhance the viability and sustainability of future plant production systems.Developing seeds of some higher plants are photosynthetically active and contain chlorophylls (Chl), which are typically destroyed at the late stages of seed maturation. However, in some crop plant cultivars, degradation of embryonic Chl remains incomplete, and mature seeds preserve green colour, as it is known for green-seeded cultivars of pea (Pisum sativum L.). The residual Chl compromise seed quality and represent a severe challenge for farmers. Hence, comprehensive understanding of the molecular mechanisms, underlying incomplete Chl degradation is required for maintaining sustainable agriculture. Therefore, here we address dynamics of plastid conversion and photochemical activity alterations, accompanying degradation of Chl in embryos of yellow- and green-seeded cultivars Frisson and Rondo respectively. The yellow-seeded cultivar demonstrated higher rate of Chl degradation at later maturation stage, accompanied with termination of photochemical activity, seed dehydration and conversion of green plastids into amyloplasts. In agreement with this, expression of genes encoding enzymes of Chl degradation was lower in the green seeded cultivar, with the major differences in the levels of Chl b reductase (NYC1) and pheophytinase (PPH) transcripts. Thus, the difference between yellow and green seeds can be attributed to incomplete Chl degradation in the latter at the end of maturation period.Climatic variations have increased the occurrence of heat stress during critical growth stages, which negatively affects grain yield in rice. Plants adapt to harsh environments, and particularly high-temperature stress, by regulating their physiological and biochemical processes, which are key tolerance mechanisms. The identification of heat-tolerant rice genotypes and reliable selection indices are crucial for rice improvement programs. Here, we evaluated the response of a rice mutant population for high-temperature stress at the seedling and reproductive stages based on agronomic, physiological and molecular indices. Estimates of variance components revealed significant differences (P less then 0.001) among genotypes, treatments and their interactions for almost all traits. The principal component analysis showed significant diversity among genotypes and traits under high-temperature stress. The mutant HTT-121 was identified as the most heat-tolerant mutant with higher grain yield, panicle fertility, cell membrane thermo-stability (CMTS) and antioxidant enzyme levels under heat stress. Various seedling-based morpho-physiological traits (leaf fresh weight, relative water contents, malondialdehyde, CMTS) and biochemical traits (superoxide dismutase, catalase and hydrogen peroxide) explained variations in grain yield that could be used as selection indices for heat tolerance in rice during early growth. Notably, heat-sensitive mutants accumulated reactive oxygen species, reduced catalase activity and upregulated OsSRFP1 expression under heat stress, suggesting their key roles in regulating heat tolerance in rice. The heat-tolerant mutants identified in this study could be used in breeding programs and to develop mapping populations to unravel the underlying genetic architecture for heat-stress adaptability.Objective Over the last century, a progressive rise in stature, known as the ‘secular trend’, was documented worldwide, and especially in Sardinia, it has reached a peak in Europe. However, this situation recently ceased in several populations. In this study, we tested the hypothesis that the stature secular trend has significantly leveled off in the Sardinian younger generations. Methods Height measurements were retrieved from a database of patients undergoing digestive endoscopy, spanning generations between 1920 and 1990. Sex-specific principal component regression models were fitted to decompose stature variation into the contribution of age, period, and birth cohort. Results A steady increase in stature was observed in generations born after 1920, with an upward surge in those born after 1950. However, a significant leveling off was observed among cohorts born after 1970 among both sexes, as mean heights stabilized at 171.1 cm with a standard error (SE) of 0.9 cm among men and a mean of 160.1 cm (SE = 0.9 cm) among women. Conclusion Our findings support a significant slowdown in the secular trend of stature among the latest Sardinian generations. Several factors, including the consumption of low-quality food, lack of physical activity, and late motherhood, among others, may explain the decline in the secular trend. selleckchem

Facebook Pagelike Widget

Who’s Online

Profile picture of Hendrix Linnet
Profile picture of Henriksen Bredahl
Profile picture of Greenberg Yusuf
Profile picture of Welch Solis
Profile picture of Contreras Houmann
Profile picture of Mooney Kring
Profile picture of Bork Villarreal
Profile picture of Klint Medina
Profile picture of Shelton Holcomb
Profile picture of Mohamad Knox
Profile picture of Morin Pena
Profile picture of Lopez Johnston
Profile picture of Dixon Hardison
Profile picture of Mercado MacKenzie
Profile picture of Crowell Hardin