-
Lauritsen Robinson posted an update 1 day, 15 hours ago
Therefore, it is likely that the antioxidant activity of apiin is related to the total antioxidant capacity of parsley.The stepwise solvation of various cationic coronene oligomers by para-hydrogen (p-H2) molecules was computationally investigated using a united-atom model for the p-H2 molecules and the Silvera-Goldman potential, together with a polarizable description for the interaction with the hydrocarbon molecules. A survey of the energy landscape for oligomers containing between 1 and 4 coronene molecules and possible different conformers was carried out using standard global optimization, the hydrocarbon complex being kept as rigid. The most stable structures provided the starting configuration of systematic path-integral molecular dynamics simulations at 2 K. The variations of the geometric and energetic properties of the solvation shell were determined with increasing number of para-hydrogen molecules. The relative stability of the solvation shell is generally found to be more robustly determined by the energy increment (or dissociation energy) than by geometrical indicators, especially when the oligomers have less ordered structures. In agreement with recent mass spectrometry experiments, the size at which the first solvation shell is complete is found to vary approximately linearly with the oligomer size when the coronene molecules stack together, with a slope that is related to the offset between two successive molecules.Si/C microsphere anodes with well-designed structures were successfully synthesized via the polymerization-induced colloid aggregation (PICA) method. The voids and void-holes in the carbon framework provide the direct and elastic buffer space for volume expansion of Si nanoparticles, respectively. This anode exhibits an outstanding structural integrity and enhanced cycling stability.Herein, β-branched carbonyl compounds were synthesised via the α-alkylation of ketones with secondary alcohols under “borrowing hydrogen” catalysis. A wide range of secondary alcohols, including various cyclic, acyclic, symmetrical, and unsymmetrical alcohols, have been successfully applied under the developed reaction conditions. A manganese(i) complex bearing a phosphine-free multifunctional ligand catalysed the reaction and produced water as the sole byproduct.Supramolecular polymers, albeit having precise internal order, largely lack precision in the mesoscopic scale because in most examples supramolecular polymerization occurs under thermodynamic control through spontaneous self-assembly. Recent reports have exemplified that by varying experimental parameters including cooling rate, solvent composition, interplay of intra- vs. inter-molecular H-bonding and others, it is possible to retard the spontaneous nucleation, and isolate a dormant kinetically controlled monomeric/aggregated state which in turn can serve as the monomer pool to undergo controlled supramolecular polymerization (CSP) through a chain-growth mechanism in the presence of an aggregated/molecular initiator (seed) or by an external stimuli like light. Supramolecular polymers with narrow dispersity, predictable length or stereo-selectivity have been achieved by CSP. Chain extension (similar to “living” polymerization) in such seed initiated CSP is now possible by batch wise addition of monomers, allowing synthesis of supramolecular block copolymers. This feature article describes recent developments in CSP (primarily under kinetic control) of various π-conjugated building blocks.A recent proposal attributes the origin of hydrotropy to the water-mediated aggregation of hydrotrope molecules around the solute. Experimental evidence for this phenomenon is reported for the first time in this work, using 1H-NMR. A new computational technique to quantify apolarity is introduced and is used to show that apolarity of both solute and hydrotrope is the driving force of hydrotropy.Herein, we report a series of highly active Al(iii)-complexes based on a novel hybrid ligand the catalen. Their application in the production of polylactide under both solution, and industrially preferred melt conditions, is demonstrated. MSC2530818 clinical trial Potential structural diversification to broaden initiator scope is discussed.We have developed a cross-linked polyethyleneimine non-porous material (PEI “snow”) for direct air capture (DAC) of CO2. This new hydrogel is green, inexpensive, readily scalable and can be fabricated through simple crosslinking of PEI with triglycidyl trimethylolpropane ether (TTE) in 10 minutes. It demonstrates outstanding DAC performance (overall CO2 uptake efficiency of approximately 50 mg g-1 of sorbent) at lab scale (sorbent weight roughly 60 g, air flow rate 2000 ml min-1) and the CO2 can be desorbed using low-grade waste steam.Compounds bearing ortho-oriented dialkylamino and boryl groups can serve as efficient reagents to trap difluorocarbene leading to zwitterionic ammonium borates featuring N-CF2-B fragments. The reagents are shelf-stable and can be used as mechanistic probes for reactions proceeding via difluorocarbene.In situ small angle scattering is used to study the pore filling mechanism and the adsorption induced deformation of a silica sample with hierarchical porosity upon water adsorption. The high structural order of the cylindrical mesopores on a 2D hexagonal lattice allows obtaining adsorption induced strains from the shift of the corresponding Bragg peaks measured by in situ small-angle X-ray scattering (SAXS). However, apparent strains due to scattering contrast induced changes of the Bragg peak shapes emerge in SAXS. In contrast, small-angle neutron scattering (SANS) allows determining the real adsorption induced strains by employing a H2O/D2O adsorbate with net coherent scattering length density of zero. This allows separating the apparent strains from the real strains experimentally and comparing them with strains obtained from model calculations of the SAXS intensity. It is shown that the apparent strains cannot be described at all by a simple mesopore model of film growth and capillary condensation. A hierarchical model taking the scattering of the micropores and the outer surface of the mesoporous struts in the hierarchically porous sample properly into account, together with a modified mesopore filling mechanism based on a corona model, leads to satisfactory description of both, the adsorption isotherm and the measured apparent strains as derived by SAXS.