Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Sahin Holder posted an update 1 day, 14 hours ago

    Amplicon sequencing of phylogenetic marker genes, e.g., 16S, 18S, or ITS ribosomal RNA sequences, is still the most commonly used method to determine the composition of microbial communities. Microbial ecologists often have expert knowledge on their biological question and data analysis in general, and most research institutes have computational infrastructures to use the bioinformatics command line tools and workflows for amplicon sequencing analysis, but requirements of bioinformatics skills often limit the efficient and up-to-date use of computational resources.

    We present dadasnake, a user-friendly, 1-command Snakemake pipeline that wraps the preprocessing of sequencing reads and the delineation of exact sequence variants by using the favorably benchmarked and widely used DADA2 algorithm with a taxonomic classification and the post-processing of the resultant tables, including hand-off in standard formats. The suitability of the provided default configurations is demonstrated using mock community data from bacteria and archaea, as well as fungi.

    By use of Snakemake, dadasnake makes efficient use of high-performance computing infrastructures. Easy user configuration guarantees flexibility of all steps, including the processing of data from multiple sequencing platforms. It is easy to install dadasnake via conda environments. dadasnake is available at https//github.com/a-h-b/dadasnake.

    By use of Snakemake, dadasnake makes efficient use of high-performance computing infrastructures. Easy user configuration guarantees flexibility of all steps, including the processing of data from multiple sequencing platforms. It is easy to install dadasnake via conda environments. dadasnake is available at https//github.com/a-h-b/dadasnake.The purpose of this guideline is to provide evidence-based guidance for the most effective strategies for the diagnosis and management of babesiosis. The diagnosis and treatment of co-infection with babesiosis and Lyme disease will be addressed in a separate Infectious Diseases Society of America (IDSA), American Academy of Neurology (AAN), and American College of Rheumatology (ACR) guideline [1]. Recommendations for the diagnosis and treatment of human granulocytic anaplasmosis can be found in the recent rickettsial disease guideline developed by the Centers for Disease Control and Prevention [2]. The target audience for the babesiosis guideline includes primary care physicians and specialists caring for this condition, such as infectious diseases specialists, emergency physicians, intensivists, internists, pediatricians, hematologists, and transfusion medicine specialists.

    Angiostrongylus cantonensis (Ac), or the rat lungworm, is a major cause of eosinophilic meningitis. Humans are infected by ingesting the 3 rd stage larvae from primary hosts, snails and slugs, or paratenic hosts. The currently used molecular test is a qPCR assay targeting the ITS1 rDNA region (ITS1) of Ac.

    In silico design of a more sensitive qPCR assay was performed based on tandem repeats predicted to be the most abundant by the RepeatExplorer algorithm. Genomic DNA (gDNA) of Ac were used to determine the analytical sensitivity and specificity of the best primer/probe combination. GLPG3970 supplier This assay was then applied to clinical and environmental samples.

    The limit of detection of the best performing assay, AcanR3990, was 1 fg (the DNA equivalent of 1/100,000 dilution of a single 3 rd stage larvae). Out of 127 CDC archived CSF samples from varied geographic locations, the AcanR3990 qPCR detected the presence of Ac in 49/49 ITS1 confirmed angiostrongyliasis patients along with 15/73 samples previously negative by ITS1 qPCR despite strong clinical suspicion for angiostrongyliasis. Intermediate hosts (gastropods) and an accidental host, a symptomatic horse, were also tested with similar improvement in detection observed. AcanR3990 qPCR did not cross-react in five CSF from patients with proven neurocysticercosis, toxocariasis, gnathostomiasis and baylisascariasis. AcanR3990 qPCR failed to amplify genomic DNA from the other related Angiostrongylus species tested except for A. mackerrasae (Am), a neurotropic species limited to Australia that would be expected to present with a clinical syndrome indistinguishable from Ac.

    These results suggest AcanR3990 qPCR assay is highly sensitive and specific with potential wide applicability as a One Health detection method for Ac and Am.

    These results suggest AcanR3990 qPCR assay is highly sensitive and specific with potential wide applicability as a One Health detection method for Ac and Am.More than 80% of land plant species benefit from symbiotic partnerships with arbuscular mycorrhizal (AM) fungi, which assist in nutrient acquisition and enhance the ability of host plants to adapt to environmental constraints. Host-generated plasma membrane-residing receptor-like kinases and the intracellular α/β-hydrolase DWARF14-LIKE, a putative karrikin receptor, detect the presence of AM fungi before physical contact between the host and fungus. Detection induces appropriate symbiotic responses, which subsequently enables a favorable environment for AM symbiosis to occur. To prevent hyper-colonization and maintain a mutually beneficial association, the host plant precisely monitors and controls AM colonization by receptor-like kinases, such as SUPER NUMERIC NODULES. Previous studies have elucidated how host plant receptors and receptor-mediated signaling regulate AM symbiosis, but the underlying molecular mechanisms remain poorly understood. The identification of a rice CHITIN ELICITOR RECEPTOR KINASE 1 interaction partner, MYC FACTOR RECEPTOR 1, and new insights into DWARF14-LIKE receptor- and SUPER NUMERIC NODULES receptor-mediated signaling have expanded our understanding of how host plant receptors and their corresponding signals regulate AM symbiosis. This review summarizes these and other recent relevant findings. The identified receptors and/or their signaling components could be manipulated to engineer crops with improved agronomic traits by conferring the ability to precisely control AM colonization.

Facebook Pagelike Widget

Who’s Online

Profile picture of Christie Copeland
Profile picture of Dogan Brandon
Profile picture of Thorhauge Dowd
Profile picture of Berthelsen Hvidberg
Profile picture of Gormsen Godfrey
Profile picture of Winstead Ipsen
Profile picture of Jimenez Ware
Profile picture of Tang Rojas
Profile picture of Liu Li
Profile picture of nawit32378
Profile picture of Purcell Clay
Profile picture of Mueller Purcell
Profile picture of Harris Walton
Profile picture of Cardenas Friedman