-
Sylvest Overgaard posted an update 19 hours, 34 minutes ago
There is an increasing interest in using magnetic resonance imaging (MRI) as a tool for precision medicine in autism spectrum disorder (ASD). This study investigated the feasibility of MRI scanning in a large comprehensive, inclusive and test heavy clinical trial for children (aged 3-12 years) with ASD, without functioning constraints for participation. Of the 71 participants enrolled who consented to the MRI, 24 participants (38%) successfully completed an MRI scan at baseline along with other assessments. This scanning followed a familiarization procedure at two preceding visits. At post-treatment, 21 participants successfully completed the MRI scan. This study highlights the challenge of completing MRI assessments in ASD populations when conducted as one of a number of tests in a clinical trial.
Multiple sclerosis is an inflammatory disorder of the central nervous system. Inflammation may create high susceptibility to subclinical atherosclerosis. The purpose of this study was to compare subclinical atherosclerosis and the role of inflammatory cytokines between the group of patients with relapsing-remitting multiple sclerosis (RRMS) and healthy controls matched for age and sex.
The study group consisted of 112non-diabetic and non-hypertensive RRMS patients treated with disease modifying drugs (DMD) and the control group was composed of 51healthy subjects. The common carotid artery (CCA) intima media thickness (IMT) was investigated. Puromycin datasheet Serum levels of risk factors for atherosclerosis and inflammatory cytokines were also determined.
The mean CCA IMT (0.572 ± 0.131 mm vs. 0.571 ± 0.114 mm) did not differ (p > 0.05) between patients and controls. The RRMS patients’ CCA IMT was significantly correlated with serum interleukin6 (IL-6) (p = 0.027), high-sensitivity C-reactive protein (hs-CRP) (p = 0.02L‑6 serum levels with CCA IMT only in the RRMS group.In a rapidly changing climate, flowering time (FL) adaptation is important to maximize seed yield in flax (Linum usitatissimum L.). However, our understanding of the genetic mechanism underlying FL in this multipurpose crop remains limited. With the aim of dissecting the genetic architecture of FL in flax, a genome-wide association study (GWAS) was performed on 200 accessions of the flax core collection evaluated in four environments. Two single-locus and six multi-locus models were applied using 70,935 curated single nucleotide polymorphism (SNP) markers. A total of 40 quantitative trait nucleotides (QTNs) associated with 27 quantitative trait loci (QTL) were identified in at least two environments. The number of QTL with positive-effect alleles in accessions was significantly correlated with FL (r = 0.77 to 0.82), indicating principally additive gene actions. Nine QTL were significant in at least three of the four environments accounting for 3.06-14.71% of FL variation. These stable QTL spanned regions that harbored 27 Arabidopsis thaliana and Oryza sativa FL-related orthologous genes including FLOWERING LOCUS T (Lus10013532), FLOWERING LOCUS D (Lus10028817), transcriptional regulator SUPERMAN (Lus10021215), and gibberellin 2-beta-dioxygenase 2 (Lus10037816). In silico gene expression analysis of the 27 FL candidate gene orthologous suggested that they might play roles in the transition from vegetative to reproductive phase, flower development and fertilization. Our results provide new insights into the QTL architecture of flowering time in flax, identify potential candidate genes for further studies, and demonstrate the effectiveness of combining different GWAS models for the genetic dissection of complex traits.One of the most frequent symptoms of COVID-19 is the loss of smell and taste. Based on the lack of expression of the virus entry proteins in olfactory receptor neurons, it was originally assumed that the new coronavirus (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2) does not infect olfactory neurons. Recent studies have reported otherwise, opening the possibility that the virus can directly infect the brain by traveling along the olfactory nerve. Multiple animal models have been employed to assess mechanisms and routes of brain infection of SARS-CoV-2, often with conflicting results. We here review the current evidence for an olfactory route to brain infection and conclude that the case for infection of olfactory neurons is weak, based on animal and human studies. Consistent brain infection after SARS-CoV-2 inoculation in mouse models is only seen when the virus entry proteins are expressed abnormally, and the timeline and progression of rare neuro-invasion in these and in other animal models points to alternative routes to the brain, other than along the olfactory projections. COVID-19 patients can be assured that loss of smell does not necessarily mean that the SARS-CoV-2 virus has gained access to and has infected their brains.
Emergency laparotomy (EL) is a high-risk surgical procedure associated with considerable morbidity and mortality around the world. A reliable risk-assessment tool that is specific to patients undergoing EL allows the early identification of high-risk patients and enables appropriate healthcare resource allocation. The objective of this study was to compare the commonly used Portsmouth-physiologic and operative severity score for the enumeration of mortality and morbidity (P-POSSUM) with the recently developed National Emergency Laparotomy Audit (NELA) score in terms of their accuracy for identifying patients at increased risk of 30-day mortality in a predominantly Asian population.
Physiological and operative data from a prospectively collected audit of adult patients undergoing EL in 2018 and 2019 across two tertiary hospitals in Singapore were used to retrospectively calculate both the P-POSSUM and NELA scores for each patient encounter. This was then compared to actual mortality rates to determine eachPOSSUM score as a model to distinguish between high- and low-risk patients undergoing EL.Myelodysplastic syndrome (MDS) with isolated deletion of chromosome 5q (MDS del5q) is a distinct subtype of MDS with quite favorable prognosis and excellent response to treatment with lenalidomide. Still, a relevant percentage of patients do not respond to lenalidomide and even experience progression to acute myeloid leukemia (AML). In this study, we aimed to investigate whether global DNA methylation patterns could predict response to lenalidomide. Genome-wide DNA methylation analysis using Illumina 450k methylation arrays was performed on n=51 patients with MDS del5q who were uniformly treated with lenalidomide in a prospective multicenter trial of the German MDS study group. To study potential direct effects of lenalidomide on DNA methylation, 17 paired samples pre- and post-treatment were analyzed. Our results revealed no relevant effect of lenalidomide on methylation status. Furthermore, methylation patterns prior to therapy could not predict lenalidomide response. However, methylation clustering identified a group of patients with a trend towards inferior overall survival.