Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Asmussen Allen posted an update 22 hours, 10 minutes ago

    In organisms, activation of mitochondrial unfolded protein response (mt UPR) provides the protective strategy against toxicity of environmental exposures. Selleckchem ANA-12 The aim of this study was to determine the activation of intestinal mt UPR and the underlying mechanisms in nanopolystyrene (100 nm) exposed Caenorhabditis elegans. The exposure was performed from L1-larvae for approximately 6.5-day. Activation of mt UPR as reflected by expressions of both HSP-6GFP and hsp-6 in the intestine could be detected in nanopolystyrene (1-100 μg/L) exposed nematodes. Meanwhile, the susceptibility to nanoplastic toxicity was observed in hsp-6(RNAi) nematodes, suggesting the protective function of intestinal activation of mt UPR. After nanoplastic exposure, the activation of intestinal mt UPR was due to increase in expressions of ATFS-1, UBL-5, and DVE-1. Moreover, the activations of intestinal mt UPR mediated by ATFS-1, DVE-1, and UBL-5 was under the control of ELT-2 signaling, Wnt signaling, and insulin signaling, respectively. In the intestine, UBL-5, DVE-1, and ATFS-1 functioned in different pathways to control nanoplastic toxicity. Therefore, we provide an important molecular network of mt UPR activation in intestine of nematodes against the nanoplastic toxicity. Our findings highlight the importance of mt UPR activation in mediating a protective response to nanoplastics at low concentrations in organisms.Visible-light-driven photocatalysis is a green and efficient strategy for wastewater treatment, where graphitic carbon nitride-based semiconductors showed excellent performance in this regard. Consequently, we report on the development of a green and facile one-pot room-temperature ultrasonic route for the preparation of novel ternary nanocomposite of cadmium sulfide quantum dots (CdS QDs), zinc oxide nanoparticles (ZnO NPs), and graphitic carbon nitride nanosheets (g-C3N4 NSs). The proposed materials had been characterized by several physicochemical techniques such as PXRD, XPS, FE-SEM, HR-TEM, PL, and DRS. The photocatalytic efficiency of the proposed photocatalysts was assessed towards the photodegradation of Rhodamine B dye as a water pollutant model using spectrophotometric measurements. The as-synthesized novel ternary nanocomposite (CdS@ZnO/g-C3N4) exhibited perfect photocatalytic activity, where almost complete degradation was achieved in only 2 h under UV-irradiation or 3 h under visible-irradiation.ing results when compared to other photocatalysts reported in the literature.Dioxins (polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF), as well as dioxin-like PCBs (dl-PCBs), are listed as persistent organic pollutants in the Stockholm Convention. In this study, we measured their concentrations in the particulate phase (PM10) of the ambient air in seven monitoring stations of the Valencian Community (Spain). A total of 82 samples were collected from different sampling sites four industrial, two urban, and one remote, from February to December 2019. The total concentrations of the sum of PCDD, PCDF, and dl-PCBs ranged from 2.90 fg TEQ/m3 to 317.98 fg TEQ/m3. Risk assessment for adults and children was performed using both daily and chronic exposure. Each station showed its specific dioxin profile, related to the main productive activities in each area. The daily inhalation dose (DID) in adults and children was lower than the tolerable daily intake (TDI) of 1-4 pg WHO TEQ kg-1 b.w. d-1 for dioxins. In the case of chronic exposure, the cancer risk for dioxins and dl-PCBs was estimated at values ranging from 5.27 E-07 to 5.52 E-05. The cancer risk for dioxins and PCBs estimated at the 95th percentile was higher than 1.0 E-06 in all of the industrial and urban areas.Landfill Gas (LFG) is a renewable energy resource. LFG quality and production rate are determined factors for the selection of the optimal technology for electric energy production. Environmental legislation, flue gas emissions, carbon footprint and maturity of technology should also be considered. The most common process for electric energy production from LFG is by Internal Combustion Engines (ICEs), which require approximately 40% minimum methane concentration. Microturbines have been also employed for electric energy production from LFG, requiring minimum methane concentration of approximately 35%. On the other hand, a relatively novel process, Gradual Oxidation (GO), can produce electric energy from LFG at methane concentrations as low as 1.5%. The present study examines the applicability of the above technologies for electric energy production from LFG, from various cells, at the landfill of Heraklion, Crete, Greece, from an economic point of view. The LandGEM (EPA) simulation model has been modified to account for the long them reduction of methane concentration in LFG, and has been adjusted, based on field measurements. The Net Present Values (NPVs) (for 15-years and 25-years from installation) for three distinct scenarios, with total electric energy production capacity of 800 kW, per scenario (using just ICEs, combination of ICE and GO or just microturbines), were calculated. The results indicated that the most profitable scenario (among the ones studied) was the one with the use of two microturbines with capacity 400 kW, each, yielding 15-years and 25-yeasr NPVs of 2.68 and 3.69 M€, respectively, for initial capital investment of 2.24 M€.Increasing number of reports on uranium contamination in groundwater bodies is a growing concern. Deinococcus radiodurans biofilm-based U(VI) bioremediation has great potential to provide solution. This study focuses on the kinetic modelling of uranium biosorption by D. radiodurans biofilm biomass and identification of the functional groups involved in the sequestration process. The effect of temperature, pH and amount of biofilm dry mass were studied using two uranyl ion concentrations (100 and 1000 mg/L). D. radiodurans dry biomass showed good affinity for uranyl ion adsorption. The kinetic experiments revealed that the biosorption process was spontaneous and exothermic in nature. The modelling of kinetic adsorption data revealed that U(VI) sorption by D. radiodurans biofilm biomass follows a pseudo-second-order reaction. Mechanism of U(VI) sorption was suggested to follow an intra-particle diffusion model, which includes covalent bonding between U(VI) and functional groups present on the surface of biofilm biomass, and diffusional barrier acts as a rate limiting step.

Facebook Pagelike Widget

Who’s Online

Profile picture of Grau Owen
Profile picture of Bruce Kerr
Profile picture of Marcussen Chan
Profile picture of Tychsen Reddy
Profile picture of Gissel Bergmann
Profile picture of Bender Villarreal
Profile picture of Munoz Weeks
Profile picture of Dohn Osborne
Profile picture of Russo Costello
Profile picture of Parrott Christoffersen
Profile picture of Hardy Jeppesen
Profile picture of palermo2
Profile picture of Prince Kane
Profile picture of Konradsen Miller
Profile picture of Dickson Wang