-
Kudsk Blevins posted an update 1 day, 1 hour ago
These results point toward the need for future development and clinical evaluation of this mHealth intervention for preventing panic attacks.Healthcare enterprises are starting to adopt cloud computing due to its numerous advantages over traditional infrastructures. This has become a necessity because of the increased volume, velocity and variety of healthcare data, and the need to facilitate data correlation and large-scale analysis. Cloud computing infrastructures have the power to offer continuous acquisition of data from multiple heterogeneous sources, efficient data integration, and big data analysis. At the same time, security, availability, and disaster recovery are critical factors aiding towards the adoption of cloud computing. However, the migration of healthcare workloads to cloud is not straightforward due to the vagueness in healthcare data standards, heterogeneity and sensitive nature of healthcare data, and many regulations that govern its usage. This paper highlights the need for providing healthcare data acquisition using cloud infrastructures and presents the challenges, requirements, use-cases, and best practices for building a state-of-the-art healthcare data ingestion service on cloud.Internet forums and public social media, such as online healthcare forums, provide a convenient channel for users (people/patients) concerned about health issues to discuss and share information with each other. In late December 2019, an outbreak of a novel coronavirus (infection from which results in the disease named COVID-19) was reported, and, due to the rapid spread of the virus in other parts of the world, the World Health Organization declared a state of emergency. BIBR 1532 in vivo In this paper, we used automated extraction of COVID-19-related discussions from social media and a natural language process (NLP) method based on topic modeling to uncover various issues related to COVID-19 from public opinions. Moreover, we also investigate how to use LSTM recurrent neural network for sentiment classification of COVID-19 comments. Our findings shed light on the importance of using public opinions and suitable computational techniques to understand issues surrounding COVID-19 and to guide related decision-making. In addition, experiments demonstrated that the research model achieved an accuracy of 81.15% – a higher accuracy than that of several other well-known machine-learning algorithms for COVID-19-Sentiment Classification.The direct analysis of 3D Optical Coherence Tomography (OCT) volumes enables deep learning models (DL) to learn spatial structural information and discover new bio-markers that are relevant to glaucoma. Downsampling 3D input volumes is the state-of-art solution to accommodate for the limited number of training volumes as well as the available computing resources. However, this limits the network’s ability to learn from small retinal structures in OCT volumes. In this paper, our goal is to improve the performance by providing guidance to DL model during training in order to learn from finer ocular structures in 3D OCT volumes. Therefore, we propose an end-to-end attention guided 3D DL model for glaucoma detection and estimating visual function from retinal structures. The model consists of three pathways with the same network architecture but different inputs. One input is the original 3D-OCT cube and the other two are computed during training guided by the 3D gradient class activation heatmaps. Each pathway orson correlation and median absolute error of 0.75 and 3.6%, respectively, for a test set of size 3100 cubes.Neovascular age-related macular degeneration (nAMD) is nowadays successfully treated with anti-VEGF substances, but inter-individual treatment requirements are vastly heterogeneous and currently poorly plannable resulting in suboptimal treatment frequency. Optical coherence tomography (OCT) with its 3D high-resolution imaging serves as a companion diagnostic to anti-VEGF therapy. This creates a need for building predictive models using automated image analysis of OCT scans acquired during the treatment initiation phase. We propose such a model based on deep learning (DL) architecture, comprised of a densely connected neural network (DenseNet) and a recurrent neural network (RNN), trainable end-to-end. The method starts by sampling several 2D-images from an OCT volume to obtain a lower-dimensional OCT representation. At the core of the predictive model, the DenseNet learns useful retinal spatial features while the RNN integrates information from different time points. The introduced model was evaluated on the prediction of anti-VEGF treatment requirements in nAMD patients treated under a pro-re-nata (PRN) regimen. The DL model was trained on 281 patients and evaluated on a hold-out test set of 69 patient. The predictive model achieved a concordance index of 0.7 in regressing the number of received treatments, while in a classification task it obtained an 0.85 (0.81) AUC in detecting the patients with low (high) treatment requirements. The proposed model outperformed previous machine learning strategies that relied on a set of spatio-temporal image features, showing that the proposed DL architecture successfully learned to extract the relevant spatio-temporal patterns directly from raw longitudinal OCT images.Upper esophageal sphincter is an important anatomical landmark of the swallowing process commonly observed through the kinematic analysis of radiographic examinations that are vulnerable to subjectivity and clinical feasibility issues. Acting as the doorway of esophagus, upper esophageal sphincter allows the transition of ingested materials from pharyngeal into esophageal stages of swallowing and a reduced duration of opening can lead to penetration/aspiration and/or pharyngeal residue. Therefore, in this study we consider a non-invasive high resolution cervical auscultation-based screening tool to approximate the human ratings of upper esophageal sphincter opening and closure. Swallows were collected from 116 patients and a deep neural network was trained to produce a mask that demarcates the duration of upper esophageal sphincter opening. The proposed method achieved more than 90% accuracy and similar values of sensitivity and specificity when compared to human ratings even when tested over swallows from an independent clinical experiment.