Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Gregory Jain posted an update 20 hours, 38 minutes ago

    The establishment of a heterojunction is a crucial strategy to design highly effective nonnoble metal nanocatalysts for the photocatalytic nitrogen reduction reaction (PNRR). Heteropoly blues (r-POMs) can act as electron-transfer mediators in PNRR, but its agglomeration limits the further promotion of PNRR productivity. In this work, we construct a protonation-modified surface of N-vacancy g-C3N4 (HV-C3N4), achieving the high dispersion of r-POMs via the surface modification strategy. Enlightened by the synergy effect of the nitrogenase, r-POMs were anchored onto HV-C3N4 nanosheets through an electrostatic self-assembly method for preparing r-POMs-based protonation-defective graphitic carbonitride (HV-C3N4/r-POMs). As an electron donor, r-PW12 can match with the energy level of HV-C3N4 to build a heterojunction. The electron redistribution of the heterojunction facilitates the optimization of the electronic structure for enhancing the performance of PNRR. HV-C3N4/r-PW12 exhibits the best PNRR efficiency of 171.4 μmol L-1 h-1, which is boosted by 94.39% (HV-C3N4) and 86.98% (r-PW12). The isotope 15NH4+ experiment proves that ammonia is derived from N2, not carbon nitride. This study opens up a crucial view to achieve the high dispersion of r-POMs nanoparticles and develop high-efficiency nonnoble metal photocatalysts for the PNRR.The interconversion of atomically precise nanoclusters represents an excellent platform to understand the structural correlations of nanomaterials at the atomic level. Herein, density functional theory calculations were performed to elucidate the mechanism of the redox-induced interconversion of [Au8(dppp)4]2+ and [Au8(dppp)4Cl2]2+ (dppp is short for 1,3-bis(diphenylphosphino)propane) nanoclusters. Reduction is the driving force for the conversion of [Au8(dppp)4Cl2]2+ to [Au8(dppp)4]2+, while the Au-Au and first Au-Cl bond dissociations occur asynchronously on the two different corner Au atoms to avoid the formation of an electron-deficient Au atom. By contrast, the reduced electron density of [Au8(dppp)4]2+ by oxidation with O2 weakens the outmost Au-Au bond therein and facilitates the coordination of the electron-rich chloride(s). The reduction- and oxidation-induced activations, respectively, of Au-Cl and Au-Au bonds and the elucidated principles on the structure-activity correlations might also be generalized to other size conversions upon redox treatment.Biological fluorescence imaging technologies have attracted a lot of attention and have been widely used in biomedical fields. Compared with other technologies, fluorescence imaging has a lower cost, higher sensitivity, and easier operation. However, due to the disadvantages of one-photon (OP) fluorescence imaging, such as low spatial and poor temporal resolution and poor tissue permeability depth, the application of OP fluorescence imaging has some limitations. Though two-photon (TP) fluorescence imaging can well overcome these shortcomings of OP, the single-mode imaging remains deficient. Therefore, dual-mode imaging combined with TP imaging and magnetic resonance imaging (MRI) can make up for the deficiency well, which make dual-mode imaging for the early diagnosis of diseases more accurate. see more Hence, a dual-mode nanoprobe TP-CQDs@MnO2 was designed for probing the fluorescence/MR dual-mode imaging strategy of intracellular H+ by using TP-CQDs (two photon-carbon quantum dots) and MnO2 nanosheets. The MnO2 nanosheets treated as fluorescence quenching agents of TP-CQDs exhibited a supersensitive response to H+, which made the fluorescence signals turn “off” to “on” for TP fluorescence imaging, in the meantime, large amounts of Mn2+ were generated for MRI. A dual-mode nanoprobe TP-CQDs@MnO2 can monitor intracellular wide pH (4.0-8.0), and the fluorescence intensity of TP-CQDs@MnO2 has recovered up to more than six times and the corresponding results of MRI were satisfactory. TP fluorescence imaging of cells and tissues showed higher detection sensitivity and deeper tissue penetration (240.0 μm) than OP. The dual-mode imaging platform hold great promise for pH-related early diagnosis and treatment, which has great potential to improve clinical efficacy.The metal binding motif of all nitrile hydratases (NHases, EC 4.2.1.84) is highly conserved (CXXCSCX) in the α-subunit. Accordingly, an eight amino acid peptide (VCTLCSCY), based on the metal binding motif of the Co-type NHase from Pseudonocardia thermophilia (PtNHase), was synthesized and shown to coordinate Fe(II) under anaerobic conditions. Parallel-mode EPR data on the mononuclear Fe(II)-peptide complex confirmed an integer-spin signal at g’ ∼ 9, indicating an S = 2 system with unusually small axial ZFS, D = 0.29 cm-1 Exposure to air yielded a transient high-spin EPR signal most consistent with an intermediate/admixed S = 3/2 spin state, while the integer-spin signal was extinguished. Prolonged exposure to air resulted in the observation of EPR signals at g = 2.04, 2.16, and 2.20, consistent with the formation of a low-spin Fe(III)-peptide complex with electronic and structural similarity to the NHase from Rhodococcus equi TG328-2 (ReNHase). Coupled with MS data, these data support a progression for iron oxidation in NHases that proceeds from a reduced high spin to an oxidized high spin followed by formation of an oxidized low-spin iron center, something that heretofore has not been observed.Multiscale carbon supraparticles (SPs) are synthesized by soft-templating lignin nano- and microbeads bound with cellulose nanofibrils (CNFs). The interparticle connectivity and nanoscale network in the SPs are studied after oxidative thermostabilization of the lignin/CNF constructs. The carbon SPs are formed by controlled sintering during carbonization and develop high mechanical strength (58 N·mm-3) and surface area (1152 m2·g-1). Given their features, the carbon SPs offer hierarchical access to adsorption sites that are well suited for CO2 capture (77 mg CO2·g-1), while presenting a relatively low pressure drop (∼33 kPa·m-1 calculated for a packed fixed-bed column). The introduced lignin-derived SPs address the limitations associated with mass transport (diffusion of adsorbates within channels) and kinetics of systems that are otherwise based on nanoparticles. Moreover, the carbon SPs do not require doping with heteroatoms (as tested for N) for effective CO2 uptake (at 1 bar CO2 and 40 °C) and are suitable for regeneration, following multiple adsorption/desorption cycles.

Facebook Pagelike Widget

Who’s Online

Profile picture of Mccarthy Romero
Profile picture of Freeman Pickett
Profile picture of Munk Ogle
Profile picture of Deal Enevoldsen
Profile picture of Hammer Hastings
Profile picture of Michaelsen Barton
Profile picture of McKenzie Burnette
Profile picture of Krag Lassiter
Profile picture of Decker Bowman
Profile picture of Garcia Rafferty
Profile picture of Terrell Owen
Profile picture of Lauritzen Crabtree
Profile picture of Chaney Wren
Profile picture of Woodruff Solomon
Profile picture of Whitney Levin