-
Schneider Coyle posted an update 25 days ago
Although patient narratives suggest the promise of utilizing stigma-reduction approaches, many providers-typically those who do not share patient standpoints-emphasize the importance of framing fat as an urgent health risk in order to “do no harm.” This case advances knowledge by demonstrating the relational process through which interventions designed to ameliorate health disparities may inadvertently discourage marginalized, “at-risk” patients from healthcare access and adherence.Thousands of abandoned mines throughout the western region of North America contain elevated total-mercury (THg) concentrations. Mercury is mobilized from these sites primarily due to erosion of particulate-bound Hg (THg-P). Organic matter-based soil amendments can promote vegetation growth on mine tailings, reducing erosion and subsequent loading of THg-P into downstream waterbodies. However, the introduction of a labile carbon source may stimulate microbial activity that can produce methylmercury (MeHg)-the more toxic and bioaccumulative form of Hg. Our objectives were to investigate how additions of different organic matter substrates impact Hg mobilization and methylation using a combination of field observations and controlled experiments. Field measurements of water, sediment, and porewater were collected downstream of the site and multi-year monitoring (and load calculations) were conducted at a downstream gaging station. MeHg production was assessed using stable isotope methylation assays and mesocosmn amendments can significantly increase Hg methylation as well as increase the mobilization of dissolved THg from the site.Forchlorfenuron (CPPU) has been used worldwide, to boost size and improve quality of various agricultural products. CPPU and its metabolites are persistent and have been detected frequently in fruits, water, sediments, and organisms in aquatic systems. Although the public became aware of CPPU through the exploding watermelon scandal of 2011 in Zhenjiang, China, little was known of its potential effects on the environment and wildlife. selleck kinase inhibitor In this study, adverse effects of CPPU on developmental angiogenesis and vasculature, which is vulnerable to insults of persistent toxicants, were studied in vivo in zebrafish embryos (Danio rerio). Exposure to 10 mg CPPU/L impaired survival and hatching, while development was hindered by exposure to 2.5 mg CPPU/L. Developing vascular structure, including common cardinal veins (CCVs), intersegmental vessels (ISVs) and sub-intestinal vessels (SIVs), were significantly restrained by exposure to CPPU, in a dose-dependent manner. Also, CPPU caused disorganization of the cytoskeleton. In human umbilical vein endothelial cells (HUVECs), CPPU inhibited proliferation, migration and formation of tubular-like structures in vitro. Results of Western blot analyses revealed that exposure to CPPU increased phosphorylation of FLT-1, but inhibited phosphorylation of FAK and its downstream MAPK pathway in HUVECs. In summary, CPPU elicited developmental toxicity to the developing endothelial system of zebrafish and HUVECs. This was do, at least in part due to inhibition of the FAK/MAPK signaling pathway rather than direct interaction with the VEGF receptor (VEGFR).As an emerging pollutant, uranium poses serious concerns to ecological and human health. The kidney has been established as a major deposition site and the most sensitive target organ for uranium poisoning, and the underlying toxicological mechanisms have been associated with oxidative stress and mitochondrial respiration. However, the identities of key molecular targets in uranium-induced toxicity remain elusive. In this study, we comprehensively evaluated the in vitro effects of uranium on ten critical enzymes in the mitochondrial respiration pathway and discovered that respiratory chain complex IV (cytochrome c oxidase) and complex V (ATP synthase) were strongly inhibited. The inhibitory effects were validated with mitochondria from human renal proximal tubule cells-the most affected renal site in uranium poisoning. The IC50 values (around 1 mg/L) are physiologically relevant, as they are comparable to known kidney accumulation levels in uranium poisoning. In addition, these inhibitory effects could explain the well-documented uranium-induced reactive oxygen species generation and mitochondrial alterations. In conclusion, cytochrome c oxidase and ATP synthase are possibly key molecular targets underlying the toxic effects of uranium.Several studies have reported the contamination of farmed fish by microcystins, however, alternations in levels of contamination resulting from seasonal changes are infrequently described. This investigation is focused on the seasonal accumulation of microcystins in farmed Nile Tilapia muscle tissue across three farms located in Zaria, Nigeria, as a means of assessing the health risks associated with the consumption of contaminated fish. Total microcystins and cyanobacteria content, respectively, in muscle tissue and gut of tilapia varied, seasonally in the farms. Microcystin levels were higher in fish tissues analyzed in the dry season than the rainy season at Nagoyi and Danlami ponds. Correlating with the levels of microcystins found in fish tissues, the highest dissolved microcystins levels in all the fish farms occurred in the dry season, where the Bal and Kol fish farm had the highest concentration (0.265 ± 0.038 μgL-1). Gut analysis of fish obtained from the ponds, revealed a predominance of Microcystis spp. among other cyanobacteria. Estimation of total daily intake of consumed contaminated Nile tilapia muscles reveal values exceeding WHO recommended (0.04 μg kg-1 body weight) total daily intake of MC-LR. Consumption of tilapia from Danlami pond presented the greatest risk with a value of 0.093 μg kg-1 total daily intake. Results of the present study necessitate the implementation of legislation and monitoring programs for microcystins and other cyanobacteria contaminants of fish obtained from farms and other sources in Zaria and indeed several other African countries.It is highly desirable but remains extremely challenging to develop a facile strategy to prepare adsorbent for dealing with heavy metal pollution in water. Here, we report a facile approach for preparing sulfydryl-functionalized graphene oxide (S-GO) by cross-linking method with an unprecedented adsorption capacity and ultrahigh selectivity for efficient Hg(II) removal. The adsorbents exhibit a prominent performance in capturing Hg(II) from wastewater with a record-high adsorption capacity of 3490 mg/g and rapid kinetics to reduce Hg(II) contaminants below the discharge standard of drinking water (2 ppb) within 60 min under a wide pH range even in the coexistent of other interfering metal ions. In addition, the adsorbents can be also easily recycled and reused multiple times with no apparent decline in removal efficiency. Considering the broad diversity, we developed also a magnetic Fe3O4/S-GO adsorbent by a simple chemical cross-linking reaction to achieve rapid separation of S-GO from their aqueous solution.