-
Simpson Rahbek posted an update 6 days ago
Many bacterial pathogens rely on virulent type III secretion systems (T3SSs) or injectisomes to translocate effector proteins in order to establish infection. The central component of the injectisome is the needle complex which assembles a continuous conduit crossing the bacterial envelope and the host cell membrane to mediate effector protein translocation. However, the molecular principles underlying type III secretion remain elusive. Here, we report a structure of an active Salmonella enterica serovar Typhimurium needle complex engaged with the effector protein SptP in two functional states, revealing the complete 800Å-long secretion conduit and unraveling the critical role of the export apparatus (EA) subcomplex in type III secretion. Unfolded substrates enter the EA through a hydrophilic constriction formed by SpaQ proteins, which enables side chain-independent substrate transport. Above, a methionine gasket formed by SpaP proteins functions as a gate that dilates to accommodate substrates while preventing leaky pore formation. Following gate penetration, a moveable SpaR loop first folds up to then support substrate transport. Together, these findings establish the molecular basis for substrate translocation through T3SSs and improve our understanding of bacterial pathogenicity and motility.An effector-reporter system is a powerful tool used to study cellular signal transduction, but this technique has been traditionally used in protoplasts. A similar system to study cellular signal transduction in fruits has not yet been established. In this study, we aimed to establish an effector-reporter system for strawberry fruit, a model nonclimacteric fruit. We first investigated the characteristics of transient gene expression in strawberry fruits and found marked variation in gene expression levels among individual fruits, and this variation has complicated the establishment of a technical system. To overcome this difficulty, we investigated a sampling strategy based on a statistical analysis of the activity pattern of four different reporters (GUS, GFP, FLuc, and RLuc) among individual fruits and combinations of pairs of reporters (GUS/GFP and RLuc/FLuc). Based on an optimized sampling strategy, we finally established a step-by step protocol for the effector/reporter assay. Using FaMYB10 and FaWRKY71 as the effectors and GUS driven by the FaCHS promoter as the reporter, we demonstrated that this effector/reporter system was practical and reliable. This effector/reporter technique will contribute to an in-depth exploration of the signaling mechanism for the regulation of strawberry fruit ripening.Lignification is a major cell wall modification that often results in the formation of sophisticated subcellular patterns during plant development or in response to environmental stresses. buy Salinosporamide A Precise localization of the spatiotemporal deposition of lignin is of great importance for revealing the lignification regulatory mechanism of individual cells. In loquat fruits, lignification typically increases the flesh lignin content and firmness, reducing their edibility and processing quality. However, the precise localization of the spatiotemporal active zones of lignification inside loquat fruit flesh remains poorly understood, and little is known about the contribution of patterned lignification to cell wall structure dynamics and the subsequent fruit-quality deterioration. Here, we performed an emerging bioorthogonal chemistry imaging technique to trace the in vivo patterned lignification dynamics in cells of loquat fruit flesh during development and storage. In developing fruits, lignified cells (LCs) and vascular bundles (VBs) were the zones of active lignification, and ring-like LCs deposited lignin at both the inner wall layer and the outer periphery sides. The domino effect of the generation of LCs was preliminarily visualized. In mature fruits, the newly formed lignin in the flesh of fruits during storage was specifically deposited in the corners and middle lamellae of parenchyma cells surrounding the VBs, resulting in the development of a reticular structure. Based on the findings, distinct spatiotemporal patterned lignification modes for different flesh cells in loquat fruits were proposed. These findings provide loquat lignification dynamics together with spatiotemporal data that can improve our understanding of the lignification process in planta.Metal halide perovskites have fascinated the research community over the past decade, and demonstrated unprecedented success in optoelectronics. In particular, perovskite single crystals have emerged as promising candidates for ionization radiation detection, due to the excellent opto-electronic properties. However, most of the reported crystals are grown in organic solvents and require high temperature. In this work, we develop a low-temperature crystallization strategy to grow CsPbBr3 perovskite single crystals in water. Then, we carefully investigate the structure and optoelectronic properties of the crystals obtained, and compare them with CsPbBr3 crystals grown in dimethyl sulfoxide. Interestingly, the water grown crystals exhibit a distinct crystal habit, superior charge transport properties and better stability in air. We also fabricate X-ray detectors based on the CsPbBr3 crystals, and systematically characterize their device performance. The crystals grown in water demonstrate great potential for X-ray imaging with enhanced performance metrics.The current dogma in ophthalmology and vision research presumes the intraocular environment to be sterile. However, recent evidence of intestinal bacterial translocation into the bloodstream and many other internal organs including the eyes, found in healthy and diseased animal models, suggests that the intraocular cavity may also be inhabited by a microbial community. Here, we tested intraocular samples from over 1000 human eyes. Using quantitative PCR, negative staining transmission electron microscopy, direct culture, and high-throughput sequencing technologies, we demonstrated the presence of intraocular bacteria. The possibility that the microbiome from these low-biomass communities could be a contamination from other tissues and reagents was carefully evaluated and excluded. We also provide preliminary evidence that a disease-specific microbial signature characterized the intraocular environment of patients with age-related macular degeneration and glaucoma, suggesting that either spontaneous or pathogenic bacterial translocation may be associated with these common sight-threatening conditions.