Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Holme Ringgaard posted an update a month ago

    These results indicate that not all sequences identified as T. erytreae belong to the same species, and that some degree of specificity with different plant hosts is likely to exist. This study provides new baseline information on the diversity of T. erytreae, with potential implications for the epidemiology of African Citrus Greening disease.Clematis florida Thun (CfT) is an ornamental and medicinal plant. It is a cold resistant but heat sensitive species and deserves to be further investigated to improve its adaptability to heat stress. Exploring the molecular mechanism potential via an omic-analysis constitutes a promising approach towards improving heat tolerance of CfT. Two CfT lines, heat resistance (HR) and heat sensitive (HS), with differential thermotolerance capacities were used for the integrative analyses of proteomics and transcriptomes. Transcriptomes analysis showed that various pathways were significantly enriched including plant hormone signal transduction and carbon fixation pathways in prokaryotes. Proteomics study revealed the enrichment of some other pathways comprising antioxidant activity and carbohydrates metabolism. Based on combined transcriptomes and proteomics analyses and following heat stress treatment, a total of 1724 annotated genes were overlapped between both CfT lines. Particularly, 84 differential expressed genen CfT. This model could be helpful also in understanding the mechanism of heat tolerance in CfT.The cholinergic system plays a major anti-inflammatory role in many diseases through acetylcholine (Ach) release after vagus nerve stimulation. Osteoarthritis (OA) is associated with local low-grade inflammation, but the regulatory mechanisms are unclear. Local Ach release could have anti-inflammatory activity since articular cells express Ach receptors involved in inflammatory responses. Using the 3DISCO clearing protocol that allows whole-sample 3-dimensional (3D) analysis, we cleared human OA cartilage-subchondral bone samples to search for cholinergic nerve fibres able to produce Ach locally. We analysed 3 plugs of knee cartilage and subchondral bone from 3 OA patients undergoing arthroplasty. We found no nerves in the superficial and intermediate articular cartilage layers, as evidenced by the lack of Peripherin staining (a peripheral nerves marker). Conversely, peripheral nerves were found in the deepest layer of cartilage and in subchondral bone. Some nerves in the subchondral bone samples were cholinergic because they coexpressed peripherin and choline acetyltransferase (ChAT), a specific marker of cholinergic nerves. However, no cholinergic nerves were found in the cartilage layers. It is therefore feasible to clear human bone to perform 3D immunofluorescence. Human OA subchondral bone is innervated by cholinergic fibres, which may regulate local inflammation through local Ach release.The photocatalytic degradation of a local South Africa oil refinery wastewater was conducted under UV radiation using an aqueous catalyst of titanium dioxide (TiO2), Degussa P25 (80% anatase, 20% rutile) in suspension. The experiment was carried out in a batch aerated photocatalytic reactor based on a central composite design (CCD) and analyzed using response surface methodology (RSM). The effects of three operational variables viz. TiO2 dosage (2-8 g/L), runtime (30-90 minutes), and airflow rate (0.768-1.48 L/min) were examined for the removal of phenol and soap oil and grease (SOG). The data derived from the CCD, and the successive analysis of variance (ANOVA) showed the TiO2 dosage to be the most influential factor, while the other factors were also significant (P less then 0.0001). Also, the ANOVA test revealed the second-order of TiO2 dosage and runtime as the main interaction factors on the removal efficiency. To maximize the pollutant removal, the optimum conditions were found at runtime of 90 minutes, TiO2 dosage of 8 g/L, and an aeration flow rate of 1.225 L/min. Under the conditions stated, the percentage removal of phenol (300 ± 7) and SOG (4000 ± 23) were 76% and 88% respectively. At 95% confidence level, the predicted models developed results were in reasonable agreement with that of the experimental data, which confirms the adaptability of the models. The first-order kinetic constants were estimated as 0.136 min-1 and 0.083 min-1 for SOG and phenol respectively.Histone H3 lysine 4 methylation (H3K4me) is extensively regulated by numerous writer and eraser enzymes in mammals. Nine H3K4me enzymes are associated with neurodevelopmental disorders to date, indicating their important roles in the brain. However, interplay among H3K4me enzymes during brain development remains largely unknown. Here, we show functional interactions of a writer-eraser duo, KMT2A and KDM5C, which are responsible for Wiedemann-Steiner Syndrome (WDSTS), and mental retardation X-linked syndromic Claes-Jensen type (MRXSCJ), respectively. Despite opposite enzymatic activities, the two mouse models deficient for either Kmt2a or Kdm5c shared reduced dendritic spines and increased aggression. Double mutation of Kmt2a and Kdm5c clearly reversed dendritic morphology, key behavioral traits including aggression, and partially corrected altered transcriptomes and H3K4me landscapes. Thus, our study uncovers common yet mutually suppressive aspects of the WDSTS and MRXSCJ models and provides a proof of principle for balancing a single writer-eraser pair to ameliorate their associated disorders.Biochar is widely used as a soil amendment. Enzyme activity is an important factor that reflects soil metabolic activity, and is involved in biochemical processes such as organic matter decomposition and nutrient cycling in soils. However, the effects of biochar prepared for different straw materials on soil enzyme activity and soil nutrients are rarely studied. HSP27inhibitorJ2 Through pot experiments, the effects of different straw (wheat, rice, maize) biochars (obtained by pyrolysis at 500 °C) on soil organic carbon, nitrogen, available phosphorus, and enzyme activity were studied in paddy soil. The results showed that the addition of biochar increased the soil organic carbon content, which gradually decreased with the extension of the rice growth period. The soil ammonium nitrogen content gradually decreased as the rice growth period continued; however, the soil nitrate nitrogen content first decreased and then increased over the rice growth period. Soil invertase, phosphatase, and urease activity first increased and then decreased, and the enzyme activity was the highest at the heading stage of rice.

Facebook Pagelike Widget

Who’s Online

Profile picture of Crosby Silverman
Profile picture of Adkins Bennedsen
Profile picture of Dalgaard Busk
Profile picture of Gupta Herman
Profile picture of Pike Chapman
Profile picture of Edmondson Cline
Profile picture of Melvin McDaniel
Profile picture of Garrison Cleveland
Profile picture of Bradford Kerr
Profile picture of Breen Rao
Profile picture of Lindholm Dodd
Profile picture of Osborne Therkelsen
Profile picture of Hoff McDonough
Profile picture of Best Cooper
Profile picture of Hale Wren