-
Vedel Healy posted an update a month ago
Copyright © 2020 the Author(s). Published by PNAS.Local control of blood flow in the heart is important yet poorly understood. Here we show that ATP-sensitive K+ channels (KATP), hugely abundant in cardiac ventricular myocytes, sense the local myocyte metabolic state and communicate a negative feedback signal-correction upstream electrically. This electro-metabolic voltage signal is transmitted instantaneously to cellular elements in the neighboring microvascular network through gap junctions, where it regulates contractile pericytes and smooth muscle cells and thus blood flow. As myocyte ATP is consumed in excess of production, [ATP]i decreases to increase the openings of KATP channels, which biases the electrically active myocytes in the hyperpolarization (negative) direction. This change leads to relative hyperpolarization of the electrically connected cells that include capillary endothelial cells, pericytes, and vascular smooth muscle cells. Such hyperpolarization decreases pericyte and vascular smooth muscle [Ca2+]i levels, thereby relaxing the contractile cells to increase local blood flow and delivery of nutrients to the local cardiac myocytes and to augment ATP production by their mitochondria. Our findings demonstrate the pivotal roles of local cardiac myocyte metabolism and KATP channels and the minor role of inward rectifier K+ (Kir2.1) channels in regulating blood flow in the heart. These findings establish a conceptually new framework for understanding the hugely reliable and incredibly robust local electro-metabolic microvascular regulation of blood flow in heart.Irinotecan treats a range of solid tumors, but its effectiveness is severely limited by gastrointestinal (GI) tract toxicity caused by gut bacterial β-glucuronidase (GUS) enzymes. Targeted bacterial GUS inhibitors have been shown to partially alleviate irinotecan-induced GI tract damage and resultant diarrhea in mice. Here, we unravel the mechanistic basis for GI protection by gut microbial GUS inhibitors using in vivo models. We use in vitro, in fimo, and in vivo models to determine whether GUS inhibition alters the anticancer efficacy of irinotecan. We demonstrate that a single dose of irinotecan increases GI bacterial GUS activity in 1 d and reduces intestinal epithelial cell proliferation in 5 d, both blocked by a single dose of a GUS inhibitor. In a tumor xenograft model, GUS inhibition prevents intestinal toxicity and maintains the antitumor efficacy of irinotecan. Remarkably, GUS inhibitor also effectively blocks the striking irinotecan-induced bloom of Enterobacteriaceae in immune-deficient mice. In a genetically engineered mouse model of cancer, GUS inhibition alleviates gut damage, improves survival, and does not alter gut microbial composition; however, by allowing dose intensification, it dramatically improves irinotecan’s effectiveness, reducing tumors to a fraction of that achieved by irinotecan alone, while simultaneously promoting epithelial regeneration. These results indicate that targeted gut microbial enzyme inhibitors can improve cancer chemotherapeutic outcomes by protecting the gut epithelium from microbial dysbiosis and proliferative crypt damage. Copyright © 2020 the Author(s). Published by PNAS.The striatal complex of basal ganglia comprises two functionally distinct districts. The dorsal district controls motor and cognitive functions. The ventral district regulates the limbic function of motivation, reward, and emotion. The dorsoventral parcellation of the striatum also is of clinical importance as differential striatal pathophysiologies occur in Huntington’s disease, Parkinson’s disease, and drug addiction disorders. Despite these striking neurobiologic contrasts, it is largely unknown how the dorsal and ventral divisions of the striatum are set up. Here, we demonstrate that interactions between the two key transcription factors Nolz-1 and Dlx1/2 control the migratory paths of striatal neurons to the dorsal or ventral striatum. Moreover, these same transcription factors control the cell identity of striatal projection neurons in both the dorsal and the ventral striata including the D1-direct and D2-indirect pathways. We show that Nolz-1, through the I12b enhancer, represses Dlx1/2, allowing normal migration of striatal neurons to dorsal and ventral locations. We demonstrate that deletion, up-regulation, and down-regulation of Nolz-1 and Dlx1/2 can produce a striatal phenotype characterized by a withered dorsal striatum and an enlarged ventral striatum and that we can rescue this phenotype by manipulating the interactions between Nolz-1 and Dlx1/2 transcription factors. Our study indicates that the two-tier system of striatal complex is built by coupling of cell-type identity and migration and suggests that the fundamental basis for divisions of the striatum known to be differentially vulnerable at maturity is already encoded by the time embryonic striatal neurons begin their migrations into developing striata.BACKGROUND Serrated polyposis syndrome (SPS) is a clinical entity characterised by large and/ormultiple serrated polyps throughout the colon and increased risk for colorectal cancer (CRC). The basis for SPS genetic predisposition is largely unknown. Common, low-penetrance genetic variants have been consistently associated with CRC susceptibility, however, their role in SPS genetic predisposition has not been yet explored. OBJECTIVE The aim of this study was to evaluate if common, low-penetrance genetic variants for CRC risk are also implicated in SPS genetic susceptibility. METHODS A case-control study was performed in 219 SPS patients and 548 asymptomatic controls analysing 65 CRC susceptibility variants. A risk prediction model for SPS predisposition was developed. see more RESULTS Statistically significant associations with SPS were found for seven genetic variants (rs4779584-GREM1, rs16892766-EIF3H, rs3217810-CCND2, rs992157-PNKD1/TMBIM1, rs704017-ZMIZ1, rs11196172-TCF7L2, rs6061231-LAMA5). The GREM1 risk allele was remarkably over-represented in SPS cases compared with controls (OR=1.573, 1.21-2.04, p value=0.0006). A fourfold increase in SPS risk was observed when comparing subjects within the highest decile of variants (≥65) with those in the first decile (≤50). CONCLUSIONS Genetic variants for CRC risk are also involved in SPS susceptibility, being the most relevant ones rs4779584-GREM1, rs16892766-EIF3H and rs3217810-CCND2. © Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.