-
Jamison Brandt posted an update 13 days ago
MnO2 based electrochemical enzyme-free glucose sensors remain significantly limited by their low electronic conductivity and associated complex preparation. click here In this paper, an MnO2 nanosheet array supported on nickel foam (MnO2 NS/NF) was prepared using a simple hydrothermal synthesis and employed as a 3D integrated electrode for enzyme-free glucose detection. It was found that MnO2 NS/NF shows high performance with a wide linear range from 1 μM to 1.13 mM, a high sensitivity of 6.45 mA mM-1 cm-2, and a low detection limit of 0.5 μM (S/N = 3). Besides, MnO2 NS/NF shows high selectivity against common interferences and good reliability for glucose detection in human serum. This work demonstrates the promising role of MnO2 NS/NF as an efficient integrated electrode in enzyme-free glucose detection with high performance.Three-dimensional (3D) tumor models have gained increased attention in life-science applications as they better represent physiological conditions of in vivo tumor microenvironments, and thus, possess big potential for guiding drug screening studies. Although various techniques proved effective in growing cancer cells in 3D, their procedures are typically complex, time consuming, and expensive. Here, we present a versatile, robust, and cost-effective method that utilizes a paper platform to create cryopreservable high throughput arrays of 3D tumor models. In the approach, we use custom 3D printed masks along with simple chemistry modifications to engineer highly localized hydrophilic ‘virtual microwells’, or microspots, on paper for 3D cell aggregation, surrounded by hydrophobic barriers that prevent inter-microspot mixing. The method supports the formation and cryopreservation of 3D tumor arrays for extended periods of storage time. Using MCF-7 and MDA-MB-231 breast cancer cell lines, we show that the cryopreservable arrays of paper-based 3D models are effective in studying tumor response to cisplatin drug treatment, while replicating key characteristics of the in vivo tumors that are absent in conventional 2D cultures. This technology offers a low cost, easy, and fast experimental procedure, and allows for 3D tumor arrays to be cryopreserved and thawed for on-demand use. This could potentially provide unparalleled advantages to the fields of tissue engineering and personalized medicine.Despite recent progress in image-to-image translation, it remains challenging to apply such techniques to clinical quality medical images. We develop a novel parameterization of conditional generative adversarial networks that achieves high image fidelity when trained to transform MRIs conditioned on a patient’s age and disease severity. The spatial-intensity transform generative adversarial network (SIT-GAN) constrains the generator to a smooth spatial transform composed with sparse intensity changes. This technique improves image quality and robustness to artifacts, and generalizes to different scanners. We demonstrate SIT-GAN on a large clinical image dataset of stroke patients, where it captures associations between ventricle expansion and aging, as well as between white matter hyperintensities and stroke severity. Additionally, SIT-GAN provides a disentangled view of the variation in shape and appearance across subjects.With a motivation to immerse students in engineering design, graphics communication, and computer aided design (CAD) skills early-on in the biomedical engineering curriculum, we launched a new 2-unit laboratory course on “Graphics Design in BME” in the Spring 2020 quarter for UC Davis sophomores. Due to the COVID-19 pandemic, the course met with the significant challenge of conversion to an online mode of teaching, instead of planned face-to-face instruction. Providing formative feedback was thought to be an important step to help students succeed in their final CAD project of the course. In the process of designing feedback, we found that the concept of feedback is still fragile in an online learning environment because online learning settings provide distinct pedagogical demands as compared to face-to-face settings. The situation is especially delicate in the context of contemporary higher education imparting engineering skills, where students attend large classes, with diminished opportunities to interacttains supplementary material available at 10.1007/s43683-021-00046-z.
The online version contains supplementary material available at 10.1007/s43683-021-00046-z.The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a serious threat to the health of millions of people. Respiratory viruses such as SARS-CoV-2 can be transmitted via airborne and fomite routes. The latter requires virion adsorption at abiotic surfaces and most likely involves the SARS-CoV-2 spike protein subunit 1 (S1), which is the outermost point of its envelope. Understanding S1 spike protein interaction with fomite surfaces thus represents an important milestone on the road to fighting the spread of COVID-19. Herein, high-speed atomic force microscopy (HS-AFM) is used to monitor the adsorption of the SARS-CoV-2 spike protein S1 at Al2O3(0001) and TiO2(100) surfaces in situ. While the single-crystalline oxide substrates are chosen to model the native surface oxides of Al- and Ti-based fomites, adsorption is studied in electrolytes that mimic the pH and major ionic components of mucosal secretions and saliva, respectively. Quantitative analysis of the obtained HS-AFM images indicates that S1 spike protein adsorption at these surfaces is mostly governed by electrostatic interactions with possible contributions from van der Waals interactions. It thus proceeds more rapidly at the TiO2(100) than at the Al2O3(0001) surface.Throughout history, humanity has been threatened by countless epidemic and pandemic outbreaks of infectious diseases, from the Justinianic Plague to the Spanish flu to COVID-19. While numerous antimicrobial and antiviral drugs have been developed over the last 200 years to face these threats, the globalized and highly connected world of the 21st century demands for an ever-increasing efficiency in the detection and treatment of infectious diseases. Consequently, the rapidly evolving field of nanomedicine has taken up the challenge and developed a plethora of strategies to fight infectious diseases with the help of various nanomaterials such as noble metal nanoparticles, liposomes, nanogels, and virus capsids. DNA nanotechnology represents a comparatively recent addition to the nanomedicine arsenal, which, over the past decade, has made great progress in the area of cancer diagnostics and therapy. However, the past few years have seen also an increasing number of DNA nanotechnology-related studies that particularly focus on the detection and inhibition of microbial and viral pathogens.