Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Devine Geisler posted an update 17 days ago

    Moreover, these differences in mitochondrial dysfunction were not evident in the parental fibroblasts and iPSC. This study demonstrates an altered transcriptome and impaired mitochondrial function in RPE derived from AMD patients versus controls, and demonstrates these differences are not present in the original fibroblasts or iPSC. These results suggest that pathology in AMD is triggered upon differentiation of parent cells into RPE. More study of this phenomenon could advance the current understandings of the etiology of AMD and the development of novel therapeutic targets.Osteolytic diseases, including breast cancer-induced osteolysis and postmenopausal osteoporosis, are attributed to excessive bone resorption by osteoclasts. Spleen tyrosine kinase (SYK) is involved in osteoclastogenesis and bone resorption, whose role in breast cancer though remains controversial. Effects of PRT062607 (PRT), a highly specific inhibitor of SYK, on the osteoclast and breast cancer functionalities are yet to be clarified. This study demonstrated the in vitro inhibitory actions of PRT on the osteoclast-specific gene expression, bone resorption, and osteoclastogenesis caused by receptor activator of nuclear factor kappa B ligand (RANKL), as well as its in vitro suppressive effects on the growth, migration and invasion of breast carcinoma cell line MDA-MB-231, which were achieved through PLCγ2 and PI3K-AKT-mTOR pathways. Further, we proved that PRT could prevent post-ovariectomy (OVX) loss of bone and breast cancer-induced bone destruction in vivo, which agreed with the in vitro outcomes. In conclusion, our findings suggest the potential value of PRT in managing osteolytic diseases mediated by osteoclasts.The glucagon-like peptide-1 (GLP-1) was shown to have neuroprotective effects in Alzheimer’s disease (AD). However, the underlying mechanism remains elusive. Astrocytic mitochondrial abnormalities have been revealed to constitute important pathologies. In the present study, we investigated the role of astrocytic mitochondria in the neuroprotective effect of GLP-1 in AD. To this end, 6-month-old 5 × FAD mice were subcutaneously treated with liraglutide, a GLP-1 analogue (25 nmol/kg/qd) for 8 weeks. Liraglutide ameliorated mitochondrial dysfunction and prevented neuronal loss with activation of the cyclic adenosine 3′,5′-monophosphate (cAMP)/phosphorylate protein kinase A (PKA) pathway in the brain of 5 × FAD mice. Next, we exposed astrocytes to β-amyloid (Aβ) in vitro and treated them with GLP-1. By activating the cAMP/PKA pathway, GLP-1 increased the phosphorylation of DRP-1 at the s637 site and mitigated mitochondrial fragmentation in Aβ-treated astrocytes. GLP-1 further improved the Aβ-induced energy failure, mitochondrial reactive oxygen species (ROS) overproduction, mitochondrial membrane potential (MMP) collapse, and cell toxicity in astrocytes. Moreover, GLP-1 also promoted the neuronal supportive ability of Aβ-treated astrocytes via the cAMP/PKA pathway. This study revealed a new mechanism behind the neuroprotective effect of GLP-1 in AD.Cytochrome P450 (CYP) enzymes play critical roles in drug transformation, and the total CYPs are markedly decreased in alcoholic hepatitis (AH), a fatal alcoholic liver disease. miRNAs are endogenous small noncoding RNAs that regulate many essential biological processes. Knowledge concerning miRNA regulation of CYPs in AH disease is limited. Here we presented the changes of key CYPs in liver samples of AH patients retrieved from GEO database, performed in silico prediction of miRNAs potentially targeting the dysregulated CYP transcripts, and deciphered a novel mechanism underlying miRNA mediated CYPs expression in liver cells. Nine miRNAs were predicted to regulate CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2J2, and CYP3A4, among which hsa-miR-148a-3p was selected as a case study. Biochemical and molecular evidences demonstrated that miR-148a promoted CYP2B6 expression by increasing mRNA stability via directly binding to the 3’UTR sequence, and that this positive posttranscriptional regulation was AGO1/2-dependent. Riluzole mouse Further, luciferase reporter gene assay and RNA secondary structure analysis illustrated that the seedless target site, not the seed target site, controlled miR-148a-mediated CYP2B6 upregulation. Moreover, we identified HNF4A as a liver-specific transcription factor of MIR-148A through EMSA and chromatin immunoprecipitation experiments. In conclusion, ethanol downregulated miR-148a in hepatocytes through HNF4A regulation, which eventually decreased CYP2B6 expression. Our finding will benefit the understanding of dysregulated drug metabolism in AH patients and highlight an unconventional mechanism for epigenetic regulation of CYP gene expression.Atherosclerotic cardiovascular diseases (ASCVDs), associated with vascular inflammation and lipid dysregulation, are responsible for high morbidity and mortality rates globally. For ASCVD treatment, cholesterol efflux plays an atheroprotective role in ameliorating inflammation and lipid dysregulation. To develop a multidisciplinary agent for promoting cholesterol efflux, octimibate derivatives were screened and investigated for the expression of ATP-binding cassette transporter A1 (ABCA1). Western blotting and qPCR analysis were conducted to determine the molecular mechanism associated with ABCA1 expression in THP-1 macrophages; results revealed that Oxa17, an octimibate derivative, enhanced ABCA1 expression through liver X receptors alpha (LXRα) activation but not through the microRNA pathway. We also investigated the role of Oxa17 in high-fat diet (HFD)-fed mice used as an in vivo atherosclerosis-prone model. In ldlr-/- mice, Oxa17 increased plasma high-density lipoprotein (HDL) and reduced plaque formation in the aorta. Plaque stability improved via reduction of macrophage accumulation and via narrowing of the necrotic core size under Oxa17 treatment. Our study demonstrates that Oxa17 is a novel and potential agent for ASCVD treatment with atheroprotective and anti-inflammatory properties.The optimal prophylaxis regimen for graft-versus-host disease (GVHD) in the setting of single-locus mismatched unrelated donor (MMUD) allogeneic hematopoietic stem cell transplantation (alloHSCT) is unclear. The use of high-dose post-transplant cyclophosphamide (PTCy) after haploidentical transplantation is effective at overcoming the negative impact of HLA disparity on survival. Limited information is available regarding the efficacy of this strategy in alloHSCT from MMUDs. Most of the published studies have used the triple immunosuppressant model of haploidentical transplant combining PTCy with calcineurin inhibitors and mycophenolate mofetil or methotrexate. In our study, we propose the use of a simpler GVHD prophylaxis protocol comprising PTCy in combination with tacrolimus for MMUD and matched unrelated donor (MUD) alloHSCT. We performed a retrospective analysis of 109 consecutive recipients of alloHSCT from unrelated donors (MMUD, n = 55; MUD, n = 54) in a single center. Graft source was primarily peripheral blood (98%).

Facebook Pagelike Widget

Who’s Online

Profile picture of Comfort Women
Profile picture of Jorgensen Kristensen
Profile picture of Boyette Borg
Profile picture of Rhodes Barrett
Profile picture of Comfort Women
Profile picture of Green Keene
Profile picture of David Pruitt
Profile picture of Wall Choi
Profile picture of Watkins Albrechtsen
Profile picture of Comfort Women
Profile picture of Ravn Boone
Profile picture of Strong Heller
Profile picture of Rush Toft
Profile picture of Tennant Lykkegaard