Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Krarup Ferguson posted an update 18 days ago

    The lacewing, Chrysoperla sinica, is an important predatory insect, which plays an important role in the integrated pest management of agroforestry pests. However, the extensive use of insecticides negatively affects C. sinica. The acute toxicity, risk level, and, sublethal effects on growth and production, predation ability, protective enzyme activity and genotoxicity of four insecticides indoxacarb, emamectin benzoate, imidacloprid and lambda-cyhalothrin to C. sinica were studied. The results showed that all four insecticides had lethal toxicity to larvae of C. sinica. Among them, emamectin benzoate had the highest toxicity with LC50 value of 7.41 mg/L. The insecticides also had different effects on the growth and reproduction of C. sinica, of which lambda-cyhalothrin had the greatest impacts. Even at a very low LC1 concentration (3.37 mg/L), it had strong impacts on the growth, reproduction and predatory ability of C. sinica. The four insecticides also caused a decrease in the predatory ability of the lacewing, of which lambda-cyhalothrin had the greatest effect. During the larval stage, the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were significantly decreased by the four insecticides. At the pupal and adult stages, the effects of the four insecticides on the activities of protective enzymes were different, and the activities of SOD, CAT and POD decreased or increased. Indoxacarb and lambda-cyhalothrin exposure induced DNA damage in the haemocytes of C. sinica and produced obvious genotoxicity. These results provide important scientific basis for the rational use of these insecticides and the protection and utilization of lacewing. Recently, oilseed rape has gathered interest for its ability to withstand elevated metal contents in plant, a key feature for remediation of contaminated soils. In this study, comparative and functional metabolomic analyses using liquid chromatography/mass spectrometry were undertaken to explore the metabolic basis of this attribute under cadmium (Cd) stress. Results revealed both conserved and differential metabolomic responses between genotype CB671 (tolerant Cd-accumulating) and its sensitive counterpart ZD622. CB671 responded to Cd stress by rearranging carbon flux towards production of compatible solutes, sugar storage forms and ascorbate, as well as jasmonates, ethylene and vitamin B6. Intriguingly, IAA abundance was reduced by 1.91-fold, which was in connection with tryptophan funnelling into serotonin (3.48-fold rise). In ZD622 by contrast, Cd provoked drastic depletion of carbohydrates and vitamins, but subtle hormones alteration. A striking accumulation of unsaturated fatty acids and oxylipins in CB671, paralleled by glycerophospholipids build-up and induction of inositol-derived signalling metabolites (up to 5.41-fold) suggested ability for prompt triggering of detoxifying mechanisms. Concomitantly, phytosteroids, monoterpenes and carotenoids were induced, denoting fine-tuned mechanisms for membrane maintenance, which was not evident in ZD622. Further, ZD622 markedly accumulated phenolics from upstream sub-classes of flavonoids; in CB671 however, a distinct phenolic wiring was activated, prioritizing anthocyanins and lignans instead. Along with cell wall (CW) saccharides, the activation of lignans evoked CW priming in CB671. Current results have demonstrated existence of notable metabolomic-based strategies for Cd tolerance in metal-accumulating oilseed rapes, and provided a holistic view of metabolites potentially contributing to Cd tolerance in this species. The aqueous-based interfacial tracer method employing miscible-displacement tests is one method available for measuring air-water interfacial areas. One potential limitation to the method is the impact of tracer-induced drainage on the system. The objective of this study was to investigate the efficacy of a low-concentration tracer test method for measuring air-water interfacial area. Tracer concentrations and analytical methods were selected that allowed the use of tracer input concentrations that were below the threshold of tracer-induced drainage. Multiple tracer tests were conducted at different water saturations. Interfacial areas increased from 34.8 to 101 cm-1 with the decrease in saturation from 0.86 to 0.62. The method produced relatively robust measurements of air-water interfacial area, with coefficients of variation ranging from 6 to 26%. A variably saturated flow and transport model that accounts for the effects of tracer on interfacial tension, and the retention of tracer at the air-water and solid-water interfaces, was used to test for potential tracer-induced drainage. The simulations showed that the use of low tracer-input concentrations eliminated this phenomenon. Selleckchem SB415286 This is consistent with the measured data for effluent-sample masses, which exhibited minimal change during the tests, and with the observation that the interfacial areas obtained with the low-concentration-tracer method were consistent with values measured with two methods that are not influenced by tracer-induced drainage. These results demonstrate that the low-concentration miscible-displacement tracer test method is an effective approach for measuring air-water interfacial areas in porous media. In some environments, a number of crops, notably maize and nuts can be contaminated by aflatoxin B1 and related compounds resulting from the growth of aflatoxin-producing Aspergilli. Fungal peroxidases have been shown to degrade a number of mycotoxins, including aflatoxin B1 (AFB1). Therefore, the purpose of this study was to investigate the in vitro enzymatic degradation AFB1 by a recombinant type B dye decolorizing peroxidase (Rh_DypB). Analysis of the reaction products by HPLC-MS analysis showed that under optimized conditions AFB1 was efficiently transformed by Rh_DypB, reaching a maximum of 96% conversion after 4 days of reaction at 25 °C. Based on high resolution mass spectrometry analysis, AFB1 was demonstrated to be quantitatively converted to AFQ1, a compound with a significantly lower toxicity. A number of low molecular mass compounds were also present in the final reaction mixture in small quantities. The results presented in this study are promising for a possible application of the enzyme Rh_DypB for aflatoxin reduction in feed.

Facebook Pagelike Widget

Who’s Online

Profile picture of Cash Norris
Profile picture of Roach Nielsen
Profile picture of Morgan Mcfarland
Profile picture of Duffy Just
Profile picture of Torp Mollerup
Profile picture of Allen Snider
Profile picture of Zhu Rye
Profile picture of Edmondson Benjamin
Profile picture of Bak Honeycutt
Profile picture of Mason Kryger
Profile picture of Henry Kornum
Profile picture of Fagan Nunez
Profile picture of Reilly Stentoft
Profile picture of Reeves Waddell
Profile picture of Carlsen McKenzie