Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Jakobsen Dunlap posted an update 4 days ago

    50 mg kg-1. Accordingly, bioaccessibility of tAs was highest in intestinal phase (48%), then in gastric phase (40%), and lowest in salivary phase (33%). Bioaccessibility of As(III) was close to 100%, and bioaccessibility of iAs was much higher than that of oAs. The mean values of target hazard quotient (THQ) and bioaccessible THQ were 0.80 and 0.70, respectively. The probability of experiencing non-carcinogenic effects was reduced to 18% down from 22% as considering iAs bioaccessibility. The mean values of carcinogenic risk (CR) and bioaccessible CR were higher than the acceptable value (1 × 10-4). NU7441 in vitro Gastropod consumption from sampling sites may cause a potential carcinogenic risk. Antioxidative responses of axenic protonema cultures of the moss Physcomitrella patens exposed to 10 μM Cd over 40 d were studied. Cd treatment suppressed growth by ca. 75% with concomitant browning of some filaments and suppression of chlorophyll autofluorescence but had no impact on tissue water content. Despite this negative growth responses which could be related to enhanced ROS formation (as detected using fluorescence staining reagents for total ROS, hydroperoxides and lipid peroxidation), some metabolites revealed strong elevation by Cd which could contribute to attenuation of long-term Cd stress (elevation of ascorbic, malic and citric acids). Molar ratio of malate to Cd was 12.7 and citrate to Cd 2.5, thus potentially contributing to Cd chelation. Interestingly, GSH/GSSG pool and nitric oxide formation remained unaltered by Cd. Accumulation of Cd reached 82 μg/g DW with bioaccumulation factor of 73. Data indicate that Cd induces elevation of potentially protective metabolites even after prolonged exposure though they do not prevent oxidative stress sufficiently. Aggregation of C60, as an important process governing its mobility and toxicity, has been quantitatively investigated. However, effects of sunlight and agitation intensity on the aggregation behavior of aqu/nC60 produced via extended mixing, have not been clarified. Therefore, in the present study, the aggregation behavior of aqu/nC60 produced at 500 and 800 rpm in the absence and presence of sunlight was investigated. Aggregation with increasing concentrations could be accelerated, while changes of Zave and zeta potential were not obvious. Critical coagulation concentrations (CCCs) of aqu/nC60 obtained at 800 rpm in the absence/presence of sunlight and that at 500 rpm under sunlight were 330, 205 and 170 mM NaCl, and 10.0, 2.6 and 3.1 mM CaCl2, respectively. These CCCs indicated that the aqu/nC60 prepared by the extended mixing were more stable than those produced by other methods. Salt-induced aggregation occurred more easily for aqu/nC60 formed under sunlight than that formed in the dark. Extra surface oxidation induced by high agitation intensity remarkably increased the stability of aqu/nC60 in NaCl solutions. In contrast, in CaCl2 solutions, aqu/nC60 formed at high agitation intensity had similar stability or even inadequate stability to that obtained at low agitation intensity due to the charge neutralization and cross-link bridging. In this study, mutant CotA-laccase SF was successfully expressed in Escherichia coli by co-expression with phospholipase C. The optimized extracellular expression of CotA-laccase SF was 1257.22 U/L. Extracellularly expressed CotA-laccase SF exhibits enzymatic properties similar to intracellular CotA-laccase SF. CotA-laccase SF could decolorize malachite green (MG) under neutral and alkaline conditions. The Km and kcat values of CotA-laccase SF to MG were 39.6 mM and 18.36 s-1. LC-MS analysis of degradation products showed that MG was finally transformed into 4-aminobenzophenone and 4-aminophenol by CotA-laccase. The toxicity experiment of garlic root tip cell showed that the toxicity of MG metabolites decreased. In summary, CotA-laccase SF had a good application prospect for degrading malachite green. This study assessed the transcription levels of estrogen-responsive genes, such as vitellogenins (Vtg1 and Vtg2), choriogenins (ChgL, ChgH, and ChgHm), cytochrome P450 aromatase (CYP19a1b), and ER subtypes (ERα, ERβ1, and ERβ2), in 7 days-post-fertilization (dpf) embryos and 9 and 12 dpf larvae of medaka (Oryzias latipes) exposed to estrogenic endocrine-disrupting chemicals (EDCs). The less then 5 h-post-fertilization embryos were exposed to EDCs such as 17β-estradiol (E2), p-n-nonylphenol (NP), and bisphenol A (BPA). In E2 (0.10-222 nM)-treated 7 dpf embryos and 9 or 12 dpf larvae, ChgL, ChgH, and ChgHm expression was up-regulated in a concentration-dependent manner. By contrast, interestingly, Vtg1 and Vtg2 expression was not induced in E2-treated 7 dpf embryos but was significantly induced in 9 and 12 dpf larvae, suggesting a developmental-stage-specific regulatory mechanism underlying Vtg expression. The maximum concentrations of NP (0.09-1.5 μM) and BPA (1.8-30 μM) up-regulated Chg expression in 9 or 12 dpf larvae, and the relative estrogenic potencies (REPs) of E2, NP, and BPA were 1, 2.1 × 10-4, and 1.0 × 10-5, respectively. Chg messenger RNA (mRNA) in medaka embryos and larvae can be used as a sensitive biomarker for screening potential estrogenic EDCs. Our assay system using embryos and larvae can be used as an in vivo alternative model because independent feeding stages (e.g., embryonic and early larval stages) are suitable alternatives. Chlorobenzenes (CBs) present in synthetic dyes are discharged into natural waters during the treatment of textile dyeing wastewater, which may have adverse effects on human and environment. In this study, the existence and removal of 12 CBs in different units of five treatment plants were examined. The ecological risk of CBs in textile dyeing wastewater was assessed by ambient severity (AS) and risk quotients (RQs). The results showed that trichlorobenzene, tetrachlorobenzene, pentachlorobenzene and hexachlorobenzene were ubiquitous in textile dyeing wastewater, and their distribution was similar. In one of the plants, the content of hexachlorobenzene was found to be as high as 9.277 μg/L in the raw water, which was an oil-water mixture. In other plants, there was no significant difference in the content and composition of CBs among influent and effluent suggesting that the conventional wastewater treatment plants cannot improve the existence of them. Monochlorobenzene and dichlorobenzene were not detected, which may have been related to strong volatility, biochemical properties, and weak instrument sensitivity.

Facebook Pagelike Widget

Who’s Online

Profile picture of Dalsgaard Iqbal
Profile picture of Rowe Klit
Profile picture of Cramer Winkel
Profile picture of Malmberg Sharp
Profile picture of Marcher Husted
Profile picture of Bekker Yu
Profile picture of Connor Caldwell
Profile picture of Holme Ringgaard
Profile picture of Smedegaard Hoover
Profile picture of Ritter McClanahan
Profile picture of Beatty Cassidy
Profile picture of Hyde Watts
Profile picture of Honore Philipsen
Profile picture of Moreno Mathiesen
Profile picture of Woods Alexander