-
Frandsen Bossen posted an update 4 days ago
Conservative management of posterior fossa epidural hematoma in the pediatric age group has been increasingly considered in the last decade with good clinical outcomes and comparable results to surgical intervention in carefully selected patients. The purpose of this study is to evaluate the outcome of observation in the management of pediatric patients with posterior fossa epidural hematoma (PFEDH) in our tertiary hospital and present a literature review on PFEDH pediatric patients.
We conducted a retrospective observational study at King Abdullah University Hospital (KAUH), a tertiary hospital in North Jordan. All pediatric patients (≤ 18years) who were admitted with a diagnosis of PFEDH from January 2010 to December 2020 were included. Demographic data, trauma type, clinical signs and symptoms on admission, CT findings, treatment type, and outcomes were collected and assessed. The outcome was measured using the Glasgow outcome scale (GOS) on discharge from the hospital.
A total of 16 patients were idiple factors such as hematoma thickness or volume, neurological status on admission, and other radiological findings as shown in our study. Pomalidomide order The overall prognosis was good in our patients.
The intersection of phytohormone signalling pathways with SUMOylation, a key post-translational modification, offers an additional layer of control to the phytohormone signalling for sophisticated regulation of plant development. Plants live in a constantly changing environment that are often challenging for the growth and development of plants. Phytohormones play a critical role in modulating molecular-level changes for enabling plants to resist climatic aberrations. The orchestration of such effective molecular responses entails rapid regulation of phytohormone signalling at transcriptional, translational and post-translational levels. Post-translational modifications have emerged as a key player in modulating hormonal pathways. The current review lays emphasis on the role of SUMOylation, a key post-translational modification, in manipulating individual hormone signalling pathways for better plant adaptability. Here, we discuss the recent advancement in the field and highlights how SUMO targets key signalgnalling at transcriptional, translational and post-translational levels. Post-translational modifications have emerged as a key player in modulating hormonal pathways. The current review lays emphasis on the role of SUMOylation, a key post-translational modification, in manipulating individual hormone signalling pathways for better plant adaptability. Here, we discuss the recent advancement in the field and highlights how SUMO targets key signalling intermediates including transcription factors to provide a quick response to different biotic or abiotic stresses, sometimes even prior to changes in hormone levels. The understanding of the convergence of SUMOylation and hormonal pathways will offer an additional layer of control to the phytohormone signalling for an intricate and sophisticated regulation of plant development and can be utilised as a tool to generate climate-resilient crops.
Transcriptome analysis revealed the potential mechanism of nitrogen regulating steviol glycosides synthesis via shifting of leaf carbon metabolic flux or inducing certain transcription factors. Nitrogen (N) plays key regulatory roles in both stevia (Stevia rebaudiana) growth and the synthesis of its functional metabolite steviol glycosides (SGs), but the mechanism by which this nutrient regulates SGs synthesis remains to be elucidated. To address this question, a pot experiment was performed in a greenhouse where stevia plants fertilized with N (the control as CK plants) and compared with plants without the supply of N. Physiological and biochemical analyses were conducted to test the growth and metabolic responses of plants to N regimes. Our results showed that N deficiency significantly inhibited plant growth and leaf photosynthesis, while increased leaf SGs contents in stevia (49.97, 46.64 and 84.80% respectively for rebaudioside A, stevioside, and rebaudioside C), which may be partly due to “concentratientified, and carbon metabolism-related events were highlighted by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Many of these genes were significantly upregulated by N-deficiency, including those involved in “phenylpropanoid biosynthesis”, “flavonoid biosynthesis” and “starch and sucrose metabolism”. Our study also analyzed the expression patterns of SGs synthesis-related genes under two N regimes and the potential transcription factors linking N nutrition and SG metabolism. N-deficiency may promote SGs synthesis by changing the carbon metabolism flux or inducing certain transcription factors. Our results provide deeper insight into the relationship between N nutrition and SGs synthesis in stevia plants.Cytotoxic macrocyclic trichothecenes such as satratoxins are produced by chemotype S strains of Stachybotrys chartarum. Diseases such as stachybotryotoxicosis in animals and the sick building syndrome as a multifactorial disease complex in humans have been associated with this mold and its toxins. Less toxic non-chemotype S strains of S. chartarum are morphologically indistinguishable from chemotype S strains, which results in uncertainties in hazard characterization of isolates. To selectively identify macrocyclic trichothecene producing S. chartarum isolates, a set of sat14 gene-specific primers was designed and applied in a loop-mediated isothermal amplification (LAMP) assay using neutral red for visual signal detection. The assay was highly specific for S. chartarum strains of the macrocyclic trichothecene producing chemotype and showed no cross-reaction with non-macrocyclic trichothecene producing S. chartarum strains or 152 strains of 131 other fungal species. The assay’s detection limit was 0.635 pg/rxn (picogram per reaction) with a reaction time of 60 min. Its high specificity and sensitivity as well as the cost-saving properties make the new assay an interesting and powerful diagnostic tool for easy and rapid testing.
Neuroblastoma (NB) is the most common extracranial solid tumor in children. Interference with the polyamine biosynthesis pathway by inhibition of MYCN-activated ornithine decarboxylase (ODC) is a validated approach. The ODC inhibitor α-difluoromethylornithine (DFMO, or Eflornithine) has been FDA-approved for the treatment of trypanosomiasis and hirsutism and has advanced to clinical cancer trials including NB as well as cancer-unrelated human diseases. One key challenge of DFMO is its rapid renal clearance and the need for high and frequent drug dosing during treatment.
We performed in vivo pharmacokinetic (PK), antitumorigenic, and molecular studies with DFMO/probenecid using NB patient-derived xenografts (PDX) in mice. We used LC-MS/MS, HPLC, and immunoblotting to analyze blood, brain tissue, and PDX tumor tissue samples collected from mice.
The organic anion transport 1/3 (OAT 1/3) inhibitor probenecid reduces the renal clearance of DFMO and significantly increases the antitumor activity of DFMO in PDX of NB (P < 0.