-
Gardner Pilegaard posted an update 9 days ago
The aim of this study was to evaluate hyperferritinemia could be a predicting factor of mortality in hospitalized patients with coronavirus disease-2019 (COVID-19).
A total of 100 hospitalized patients with COVID-19 in intensive care unit (ICU) were enrolled and classified into moderate (n=17), severe (n=40) and critical groups (n=43). Clinical information and laboratory results were collected and the concentrations of ferritin were compared among different groups. The association between ferritin and mortality was evaluated by logistic regression analysis. Moreover, the efficiency of the predicting value was assessed using receiver operating characteristic (ROC) curve.
The amount of ferritin was significantly higher in critical group compared with moderate and severe groups. The median of ferritin concentration was about three times higher in death group than survival group (1722.25μg/L vs. 501.90μg/L, p<0.01). The concentration of ferritin was positively correlated with other inflammatory cytokines, such as interleukin (IL)-8, IL-10, C-reactive protein (CRP) and tumor necrosis factor (TNF)-α. Logistic regression analysis demonstrated that ferritin was an independent predictor of in-hospital mortality. Especially, high-ferritin group was associated with higher incidence of mortality, with adjusted odds ratio of 104.97 [95% confidence interval (CI) 2.63-4185.89; p=0.013]. Moreover, ferritin had an advantage of discriminative capacity with the area under ROC (AUC) of 0.822 (95% CI 0.737-0.907) higher than procalcitonin and CRP.
The ferritin measured at admission may serve as an independent factor for predicting in-hospital mortality in patients with COVID-19 in ICU.
The ferritin measured at admission may serve as an independent factor for predicting in-hospital mortality in patients with COVID-19 in ICU.The first total synthesis of chondrochloren A is accomplished using a 1,2-metallate rearrangement addition as an alternative for the Nozaki-Hiyama-Kishi reaction. This transformation also avoids the inherent challenges of this polyketide segment and provides a new, unprecedented strategy to assemble polyketidal frameworks. The formation of the Z-enamide is accomplished using a Z-selective cross coupling of the corresponding amide to a Z-vinyl bromide.
The study presents a noninvasive, real-time monitoring technique for the cross-sectional imaging of the laser-tissue soldering process with a swept-source optical coherence tomography (SSOCT) system. The study also aims at performing a comparative study of the laser-tissue soldering (LTS) process using optimized compositions of albumin as solder biomaterials.
The experimental study was conducted both ex vivo and in vivo to assess the superiority of the LTS process over conventional methods using a noninvasive imaging tool. GSK’872 molecular weight In our attempt to combine the two techniques into one diagnostic tool, we have used the SSOCT system for a thoroughgoing investigation of the process in real-time. Laser-assisted tissue soldering was performed using a pulsed near-infrared (NIR) laser with a central wavelength of 980 nm, an output power of 5 W, and beam diameter (1/e
) of 6 mm. Here, the SSOCT system has been utilized to observe and analyze the transitions taking place in real-time without disrupting the process. For rocedure. Also, volumetric measurements of percentage reduction in wound area can be done with OCT. SSOCT system can be a potential imaging modality for real-time noninvasive imaging of surgical procedures like LTS. Lasers Surg. Med. © 2021 Wiley Periodicals LLC.
Both ex vivo and in vivo demonstration of the LTS process were presented with a clinical resemblance. OCT can be of great value to determine the wound contraction in case of incisional wounds or sealed wounds produced by the LTS procedure. Also, volumetric measurements of percentage reduction in wound area can be done with OCT. SSOCT system can be a potential imaging modality for real-time noninvasive imaging of surgical procedures like LTS. Lasers Surg. Med. © 2021 Wiley Periodicals LLC.
A novel dual-stage method for active laser drug delivery (DSLADD) in the treatment of nail diseases is being presented. This method includes sequentially performed microporation of the nail with submillisecond pulses of ErYLF laser radiation through a layer of an aqueous solution of drug deposited on the nail surface (Stage 1) and exposure this layer to the same laser radiation to deliver drug under the nail plate (Stage 2). The delivery of methylene blue (MB) as one of the possible drugs in the treatment of nail diseases is investigated. The influence of the thickness of the MB layer, as well as the energy and number of applied laser pulses, on the rate of active laser delivery is discussed. To illustrate the possible effect of delivery on the drug delivered, special attention is paid to the deformation of the extinction spectrum of MB solution after laser irradiation.
Diode-pumped ErYLF laser was used for DSLADD. The process of DSLADD under the nail plate was investigated using digital video microscopy.icroporation of the nail plate and drug delivery through a single microchannel will be about 1.5 s. Lasers Surg. Med. © 2021 Wiley Periodicals LLC.Cytotoxic T-lymphocyte associated protein-4 (CTLA-4) and the Programmed Death Receptor 1 (PD-1) are immune checkpoint molecules that are well-established targets of antibody immunotherapies for the management of malignant melanoma. The monoclonal antibodies, Ipilimumab, Pembrolizumab, and Nivolumab, designed to interfere with T cell inhibitory signals to activate immune responses against tumors, were originally approved as monotherapy. Treatment with a combination of immune checkpoint inhibitors may improve outcomes compared to monotherapy in certain patient groups and these clinical benefits may be derived from unique immune mechanisms of action. However, treatment with checkpoint inhibitor combinations also present significant clinical challenges and increased rates of immune-related adverse events. In this review, we discuss the potential mechanisms attributed to single and combined checkpoint inhibitor immunotherapies and clinical experience with their use.