Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Krarup Ferguson posted an update 4 days ago

    sequently, the relative survival benefit of EVAR over open repair has increased over time, which should encourage further adoption of EVAR for ruptured AAA. A passive three-dimensional model of the human cochlea is described and analysed in the present article. One of its features is the implementation of a thermo-viscous boundary layer as a physically approved mechanism of mechanical damping. The model is solved numerically with the finite element method in ANSYS® and the simulation results are analysed with the help of MATLAB®. In this way curves of the basilar membrane’s amplitude, phase and velocity for frequencies between 1000Hz and 8000Hz are calculated. A traveling wave develops on the basilar membrane and is damped after reaching its frequency-dependent maximum due to the boundary layer damping. A plot of the frequency-to-space transformation can be obtained which fits to the experimental data found in the literature. Furthermore, the study shows an energy analysis of the simulation verifying the boundary layer damping as a relevant physical effect for 3D-models of the cochlea. OBJECTIVE Triple-negative tumors are the most aggressive type of breast cancer. We aimed to analyze the main radiologic and histopathologic factors of these tumors to create a risk profile. MATERIALS AND METHODS We analyzed data from 140 patients diagnosed with triple-negative breast cancer between January 2007 and December 2016, with follow-up through April 2018. We analyzed the following variables in the breast MRI done for staging size, necrosis, associated findings, adenopathies, and perfusion and diffusion parameters. We analyzed the following variables in histopathologic studies of biopsy specimens histological type, Scarf-Bloom, Ki67, and p53 in the infiltrating component as well as in the in situ component. We analyzed the following variables in histopathologic studies of positive lymph nodes and surgical specimens size, lymphovascular/perineural invasion, and microglandular adenosis. We analyzed the relation between the radiologic and histopathologic factors and recurrence and disease-free survival. RESULTS MRI tumor size>25mm, non-nodular enhancement, breast edema, areola-nipple complex retraction, and lymph-node involvement were associated with recurrence and lower disease-free survival. Invasive lobular carcinoma, postsurgical size>20mm, and p5325mm, and adenopathies on MRI, and p53 expression less then 15% on histopathologic study. In the present study, we describe the development of a fast, 2-step salt gradient for analysis of chondroitin sulfate disaccharides. Using salt gradients, which is somewhat unusual in HILIC-based separations, provides relatively fast chromatography with excellent sensitivity (15 min cycle time, 10-20 fmol/µL detection, 30-50 fmol/µL quantitation limit), and good linearity. The efficiency of the new method is demonstrated by measuring human tissue slices of healthy, cirrhotic, and cancerous liver samples. Preliminary results show major differences among the quantity and sulfation pattern of the various sample types. V.This study proposed the developed of a molecularly imprinted polymer for the extraction and determination of condensed tannins from the barks of Red Angico (Anadenanthera macrocarpa), Jabuticaba (Myrciaria jabuticaba) and Umbu (Spondias tuberosa). The polymer was synthesized using the condensed tannin extracted from the Red Angico bark as the template molecule, as well as, catechin standard solution. Selectivity and characterization tests for the molecularly imprinted polymers and a non-imprinted polymer were performed. The polymers were employed as extraction phase for the solid-phase extraction of condensed tannins from the studied samples. A higher imprinting coefficient was obtained for MIP synthesized from catechin standard solution as template. The intrinsic solid-phase extraction variables were evaluated and optimized. The developed methodology showed inter- and intra-day precisions of 6.7-10.1 and 4.6-8.4, respectively, and recovery values ranging from 101.9 to 105.5. The obtained limits of detection and quantification were 10 mg L-1 and 40 mg L-1, respectively. It is important to highlight that the developed methodology here was applied to common waste and tailings from Brazilian food industry. The results indicate that the polymers were capable to extract tannins from the evaluated samples, reducing method cost and time. The investigation of erythropoietin (EPO) has expanded to include potential nonhematopoietic roles in neural and retinal diseases, including diabetic retinopathy. However, it remains unclear how EPO functions to support the neural retina. Transgenic mice with hypoactive EPO receptor (EPOR) signaling (hWtEPOR) were compared with littermate control mice (WT) to test the role of EPOR signaling under normal conditions and after vascular injury and regrowth into the retina. Although retinal function tested with OptoMotry and electroretinography was comparable to adult (8-week-old) littermate WT mice, hWtEPOR mice had thinner inner and outer plexiform layers and a greater number of amacrine cells. Injury and repair caused by the oxygen-induced retinopathy model reduced visual acuity thresholds, reduced electroretinography amplitudes, and thinned the outer plexiform and inner nuclear layers of both WT and hWtEPOR 8-week-old mice. In hWtEPOR compared with WT mice, scotopic a-wave amplitudes were reduced by injury, despite no change in outer nuclear layer thickness; and peripheral rod, but not cone number, was reduced. Scotopic b-waves were reduced in injured hWtEPOR mice compared with WT, and rod bipolar cell ectopic neurites were increased in both genotypes after injury, suggesting a potential reparative process to preserve connectivity and the b-wave. Normal EPOR signaling appeared important because ectopic neurites and b-waves were lower in the hWtEPOR than WT injured mice. Bronchopulmonary dysplasia (BPD)-associated pulmonary hypertension (PH) is an infantile lung disease characterized by aberrant angiogenesis and impaired resolution of lung injury. Adrenomedullin (AM) signals through calcitonin receptor-like receptor and receptor activity-modifying protein 2 and modulates lung injury initiation. selleck However, its role in lung injury resolution and the mechanisms by which it regulates angiogenesis remain unclear. Consequently, we hypothesized that AM resolves hyperoxia-induced BPD and PH via endothelial nitric oxide synthase (NOS3). AM-sufficient (ADM+/+) or -deficient (ADM+/-) mice were exposed to normoxia or hyperoxia through postnatal days (PNDs) 1 to 14, and the hyperoxia-exposed mice were allowed to recover in normoxia for an additional 56 days. Lung injury and development and PH were quantified at different time points. Human pulmonary microvascular endothelial cells were also used to examine the effects of AM signaling on the NOS3 pathway and angiogenesis. Lung blood vessels and NOS3 expression decreased and the extent of hyperoxia-induced BPD and PH increased in ADM+/- mice compared with ADM+/+ mice.

Facebook Pagelike Widget

Who’s Online

Profile picture of Snyder Dwyer
Profile picture of Vazquez Wallace
Profile picture of Lee Thomsen
Profile picture of Dreier McFarland
Profile picture of Boll Storm
Profile picture of Sweeney Krabbe
Profile picture of Maher Moser
Profile picture of Fernandez Walker
Profile picture of Harrington Moos
Profile picture of Bowles Mejer
Profile picture of Schaefer Barron
Profile picture of Hyde Hill