Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Drake Hayden posted an update 7 days ago

    us in facilitating efficacious use of traditional antimicrobials, through enhanced penetration of the antibiotic into the bacterial cell. Promising anti-resistance adjuvant therapeutics and targets will be described, and key remaining challenges highlighted. As antimicrobial stewardship becomes more challenging in an era of emerging and re-emerging infectious diseases and global conflict, innovation in antibiotic adjuvant therapy can play an important role in extending the shelf-life of our existing antimicrobial therapeutic agents.Reactivation and shedding of human cytomegalovirus (HCMV) in breast milk during lactation is highly frequent in HCMV-seropositive mothers. This represents a key transmission route for postnatal HCMV infection and can lead to severe disease in preterm neonates. Little is known about HCMV strain composition or longitudinal intrahost viral population dynamics in breast milk from immunocompetent women. We performed HCMV-specific target enrichment and high-throughput sequencing of 38 breast milk samples obtained in Germany between days 10 and 60 postpartum from 15 mothers with HCMV DNA lactia, and assembled HCMV consensus sequences de novo. Remdesivir The genotype distribution and number of HCMV strains present in each sample were determined by quantifying genotype-specific sequence motifs in 12 hypervariable viral genes, revealing a wide range of genotypes (82/109) for these genes in the cohort and a unique, longitudinally stable strain composition in each mother. Reactivation of up to three distinct HCMV strains was detected in 8/15 of mothers, indicating that a representative subset of the woman’s HCMV reservoir might be locally reactivated early during lactation. As described previously, nucleotide diversity of samples with multiple strains was much higher than that of samples with single strains. Breast milk as a main source of postnatal mother-to-infant transmission may serve as a repository for viral diversity and thus play an essential role in the natural epidemiology of HCMV.Health care facilities are facing serious threats by the recently emerging human fungal pathogen Candida auris owing to its pronounced antifungal multidrug resistance and poor diagnostic tools. Distinct C. auris clades evolved seemingly simultaneously at independent geographical locations and display both genetic and phenotypic diversity. Although comparative genomics and phenotypic profiling studies are increasing, we still lack mechanistic knowledge about the C. auris species diversification and clinical heterogeneity. Since gene expression variability impacts phenotypic plasticity, we aimed to characterize transcriptomic signatures of C. auris patient isolates with distinct antifungal susceptibility profiles in this study. First, we employed an antifungal susceptibility screening of clinical C. auris isolates to identify divergent intra-clade responses to antifungal treatments. Interestingly, comparative transcriptional profiling reveals large gene expression differences between clade I isolates and one clade II strain, irrespective of their antifungal susceptibilities. However, comparisons at the clade levels demonstrate that minor changes in gene expression suffice to drive divergent drug responses. Finally, we functionally validate transcriptional signatures reflecting phenotypic divergence of clinical isolates. Thus, our results suggest that large-scale transcriptional profiling allows for predicting phenotypic diversities of patient isolates, which may help choosing suitable antifungal therapies of multidrug-resistant C. auris.Pyridoxal 5′-phosphate (PLP) functions as a cofactor for hundreds of different enzymes that are crucial to the survival of microorganisms. PLP-dependent enzymes have been extensively characterized and proposed as drug targets in Entamoeba histolytica. This pathogen is unable to synthesize vitamin B6 via de-novo pathway and relies on the uptake of vitamin B6 vitamers from the host which are then phosphorylated by the enzyme pyridoxal kinase to produce PLP, the active form of vitamin B6. Previous studies from our lab shows that EhPLK is essential for the survival and growth of this protozoan parasite and its active site differs significantly with respect to its human homologue making it a potential drug target. In-silico screening of EhPLK against small molecule libraries were performed and top five ranked molecules were shortlisted on the basis of docking scores. These compounds dock into the PLP binding site of the enzyme such that binding of these compounds hinders the binding of substrate. Of these five compounds, two compounds showed inhibitory activity with IC50 values between 100-250 μM when tested in-vitro. The effect of these compounds proved to be extremely lethal for Entamoeba trophozoites in cultured cells as the growth was hampered by 91.5% and 89.5% when grown in the presence of these compounds over the period of 72 hours.Mucormycosis is a life-threatening opportunistic infection caused by certain members of the fungal order Mucorales. This infection is associated with high mortality rate, which can reach nearly 100% depending on the underlying condition of the patient. Treatment of mucormycosis is challenging because these fungi are intrinsically resistant to most of the routinely used antifungal agents, such as most of the azoles. One possible mechanism of azole resistance is the drug efflux catalyzed by members of the ATP binding cassette (ABC) transporter superfamily. The pleiotropic drug resistance (PDR) transporter subfamily of ABC transporters is the most closely associated to drug resistance. The genome of Mucor circinelloides encodes eight putative PDR-type transporters. In this study, transcription of the eight pdr genes has been analyzed after azole treatment. Only the pdr1 showed increased transcript level in response to all tested azoles. Deletion of this gene caused increased susceptibility to posaconazole, ravuconazole and isavuconazole and altered growth ability of the mutant. In the pdr1 deletion mutant, transcript level of pdr2 and pdr6 significantly increased. Deletion of pdr2 and pdr6 was also done to create single and double knock out mutants for the three genes. After deletion of pdr2 and pdr6, growth ability of the mutant strains decreased, while deletion of pdr2 resulted in increased sensitivity against posaconazole, ravuconazole and isavuconazole. Our result suggests that the regulation of the eight pdr genes is interconnected and pdr1 and pdr2 participates in the resistance of the fungus to posaconazole, ravuconazole and isavuconazole.

Facebook Pagelike Widget

Who’s Online

Profile picture of Mikkelsen Pickett
Profile picture of Salisbury Eskesen
Profile picture of Qvist Nixon
Profile picture of Tillman Gould
Profile picture of Wentworth Medina
Profile picture of Gibson Baldwin
Profile picture of Harvey Lim
Profile picture of Rosen Bugge
Profile picture of Holcomb Sharp
Profile picture of Guldbrandsen Hussein
Profile picture of Grady Johnston
Profile picture of Thompson Spivey
Profile picture of Valentine Lundgaard
Profile picture of Stevens Stroud
Profile picture of Ahmad Schroeder