-
Kirkeby Hertz posted an update 6 days ago
DNA nanoflower has been demonstrated as a promising DNA nanostructure for therapeutics and bioimaging primarily because of the programmable DNA sequence and unique structure. Herein, we report manganese ions mediated enzymatic biomineralization to prepare DNA-Mn hybrid nanoflower (DMNF). Paramagnetic Mn2+ was explored as the co-factor of DNA polymerase for the extension of long strand DNA. The biomimetic synthesis of DMNF was performed using the long strand DNA as template via nucleation and growth of Mn2PPi. The morphology and size of DMNF were controllable by tuning reaction time and Mn2+ concentration. The aptamer sequence was encoded into circle template to achieve tumor-targeted DMNF, and cellular uptake assay demonstrated obvious aptamer-mediated internalization. DMNF showed enhanced T1-weighted magnetic resonance (MR) imaging effect in acid environment for high tumor-specific MR imaging, and high spatial resolution imaging of kidneys and liver. Our work provides a facile enzymatically biomineral strategy to integrate multifunctional modules into one DNA structure and promotes the development of DNA nanostructure for precision medicine.Tumor-associated macrophages (TAMs) exist in nearly all tumors, and form a major part of the tumor microenvironment. TAMs are divided into two groups tumor-suppressing M1 type and tumor-promoting M2 type. Most TAMs are educated by the tumor cells to become M2 type, which support tumor growth and make immunotherapy ineffective. Antibody-dependent cellular phagocytosis (ADCP) is an important mechanism for antibody cancer therapy, and this mechanism is dependent on TAMs. In this study, we found that the M1 type macrophages elicit a more efficient ADCP response than the M2 type, which was confirmed by three tumor cell lines, Raji, A431, and SKBR3, along with their corresponding therapeutic antibody Rituximab, anti-EGFR mouse monoclonal antibody (clone 528), and Trastuzumab, respectively. Resiquimod (R848), an immune system activating agent, has been shown to stimulate the M1 type macrophages, and re-educate the TAMs from M2 type to M1 type. By treating TAMs with R848, the ADCP response increased significantly in vitro and in in vivo mouse xenograft models. R848 encapsulated liposomes (R848-LPs) not only accumulated efficiently in the tumor tissues, but also distributed in the TAMs. Synergizing the R848-LPs with the anti-EGFR mouse monoclonal antibody (clone 528) significantly inhibited WiDr-tumor growth in vivo. Our study also revealed that the TAM-targeted delivery of R848 is able to re-educate the TAMs to M1 type, enhance the ADCP effect of the antibodies, and hence, enhance the anti-tumor effect of the therapeutic antibodies.T cells are often referred to as the ‘guided missiles’ of our immune system because of their capacity to traffic to and accumulate at sites of infection or disease, destroy infected or mutated cells with high specificity and sensitivity, initiate systemic immune responses, sterilize infections, and produce long-lasting memory. As a result, they are a common target for a range of cancer immunotherapies. buy Menadione However, the myriad of challenges of expanding large numbers of T cells specific to each patient’s unique tumor antigens has led researchers to develop alternative, more scalable approaches. Biomaterial platforms for expansion of antigen-specific T cells offer a path forward towards broadscale translation of personalized immunotherapies by providing “off-the-shelf”, yet modular approaches to customize the phenotype, function, and specificity of T cell responses. In this review, we discuss design considerations and progress made in the development of ex vivo and in vivo technologies for activating antigen-specific T cells, including artificial antigen presenting cells, T cell stimulating scaffolds, biomaterials-based vaccines, and artificial lymphoid organs. Ultimate translation of these platforms as a part of cancer immunotherapy regimens hinges on an in-depth understanding of T cell biology and cell-material interactions.Ecological concrete (eco-concrete) can reduce excess nutrients (nitrogen and phosphorus) in water, but its effectiveness in removing nutrients in marine coastal sediments and the response of sediment microbial communities to its use are largely unknown. In this study, eco-concrete planted with Bruguiera gymnorrhiza was used to remove nutrients in marine coastal sediment. We found that the mean removal efficiencies of sediment total nitrogen and total phosphorus by using planted eco-concrete were 11.50% and 30.31% on day 60, and were higher than those obtained by only using B. gymnorrhiza (7.14% and 7.36%). the Diatoms and bacterial genera Fusibacter and Anoxynatronum (which belong to Firmicutes) increased and became the abundant microbes by day 60 when using planted eco-concrete, indicating their potential roles in nutrient removal. Moreover, the eco-concrete did not endanger the core microbes in sediment suggesting its environment-friendly character. Our results suggest a potential method to control marine coastal eutrophication.Paint particles are part of the increasingly important microplastics (MPs) pollution of our oceans. They contain polyurethanes, polyesters, polyacrylates, polystyrenes, alkyls and epoxies. In spite of their prevalence, paint fragments are often excluded from MP audits. This review, citing 127 references, discusses detection, characteristics, sources and ecological effects of paint fragments in our oceans, as well as the abundance of paint fragments in MP samples around the world and their colonization by marine microorganisms, which differs from that of non-paint MPs. Paint MPs arise from shipping and boating activities, road markings and external surfaces of buildings. Many paint fragments come from antifouling paints used on commercial vessels and leisure boats; these may be regarded as particular pollutants, not only containing but also leaching heavy metals and biocides. Some effects of antifouling paint particles on aquatic biota are caused by these toxins. Paint particles are an understudied portion of marine MP pollution.Marine sediments serve as a sink for environmental pollutants, such as lipophilic marine phycotoxins (LMPs). To reveal the fate of LMPs, we studied their distribution characteristics in sediments. From January 2016 to August 2017, we sampled surface sediments from Jiaozhou Bay (JZB) of the North Yellow Sea, and their solid-phase extracts were analyzed using liquid chromatography-tandem mass spectrometry. Three LMPs viz. okadaic acid (OA), dinophysistoxin-1 (DTX1), and pectentoxin-2 (PTX2) were predominant in the sediments. Also, PTX2 distribution was more extensive in the area, while OA and DTX1 were more concentrated. Having the same toxigenic algae origin, the spatial distribution of OA, DTX1, and PTX2 in the sediments was similar.