Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Epstein Adams posted an update 12 days ago

    Hypoxia is one of the major stresses in aquaculture animals. Recently, we reported that hypoxia disrupts the endocrine system and inhibits testicular function of oriental river prawns (Macrobrachium nipponense), but the molecular mechanism of testes responded to hypoxia remains largely unknown. In the present study, we aimed to integrate whole phosphoproteomic profiles of hypoxia-treated testes of the oriental river prawn (Macrobrachium nipponense). We successfully isolated sperm cells and evaluated the mitochondrial morphology and function using laser confocal microscopy, flow cytometry, and biochemical analyses. Quantitative proteomics identified 117 differentially abundant phosphorylated proteins, and these proteins are mainly involved in the pathways related to cellular processes, including autophagy, apoptosis, and the FoxO signaling pathway. Protein-protein interaction analysis clustered these phosphoproteins into three groups, many of which have been suggested to impact carbohydrate metabolism, autophagy, and signal regulation in testes. Western blotting confirmed that phosphorylated proteins including AMPK, ULK1, and TP53 (of the AMPK pathway) may contribute to testicular dysfunction caused by hypoxia. Further, we investigated the potential roles of AMP-activated protein kinase (AMPK)’s in testes mitochondrial autophagy and apoptosis in M. nipponense as induced by hypoxia. Simultaneous knockdown of AMPKα in sperm cells led to a decrease in FOXO3a phosphorylation at Ser413, upregulation of caspase-3 and caspase-9 activities, and an increased apoptosis rate. These results improve our understanding of hypoxia-induced energy metabolism disorders in the testes of M. nipponense.In indigo, excited state proton transfer (ESPT) is known to be associated with the molecular mechanism responsible for highly efficient radiationless deactivation. When this route is blocked (partially or totally), new deactivation routes become available. Using new green chemistry procedures, with favorable green chemistry metrics, monosubstitution and disubstitution of N group(s) in indigo, by tert-butoxy carbonyl groups, N-(tert-butoxycarbonyl)indigo (NtBOCInd) and N,N’-(tert-butoxycarbonyl)indigo (N,N’tBOCInd), respectively, were synthetically accomplished. The compounds display red to purple colors depending on the solvent and substitution. Different excited-state deactivation pathways were observed and found to be structure- and solvent-dependent. Trans-cis photoisomerization was found to be absent with NtBOCInd and present with N,N’tBOCInd in nonpolar solvents. Time-resolved fluorescence experiments revealed single-exponential decays for the two compounds which, linked to time-dependent density functional theory (TDDFT) studies, show that with NtBOCInd ESPT is extremely fast and barrierless-predicted to be 1 kJ mol-1 in methylcyclohexane and 5 kJ mol-1 in dimethylsulfoxide-, which contrasts with ∼11 kJ mol-1 experimentally obtained for indigo. An alternative ESPT, competitive with the N-H···O═C intramolecular pathway, involving dimer units is also probed by TDDFT and found to be consistent with the experimentally observed time-resolved data. N,N’tBOCInd, where ESPT is precluded, shows solvent-dependent trans-cis/cis-trans photoisomerization and is surprisingly found to be more stable in the nonemissive cis conformation, whose deactivation to S0 is found to be solvent-dependent.The importance of sexual dimorphism of the mouse brain metabolome was recently highlighted, in addition to a high regional specificity found between the frontal cortex, the cerebellum, and the brain stem. To address the origin of this dimorphism, we performed gonadectomy on both sexes, followed by a metabolomic study targeting 188 metabolites in the three brain regions. While sham controls, which underwent the same surgical procedure without gonadectomy, reproduced the regional sexual dimorphism of the metabolome previously identified, no sex difference was identifiable after gonadectomy, through both univariate and multivariate analyses. These experiments also made it possible to identify which sex was responsible for the dimorphism for 35 metabolites. The female sex contributed to the difference for more than 80% of them. Our results show that gonads are the main contributors to the brain sexual dimorphism previously observed, especially in females.A new protocol for amide-directed Cu-catalyzed aminoalkylation of unactivated alkenes using cyclobutanone oxime esters as alkyl radical donors is developed. Both primary and secondary alkyl groups can be selectively installed at the C4 position of terminal or cis-internal 3-alkenamides in moderate to good yield. This reaction offers a useful method for the diastereoselective synthesis of β-lactams bearing 4-cyanoalkyl β-substituents. The use of a weakly coordinating counteranion as the Cu catalyst is critical for the formation of β-lactam products.The thermal-condensation method is widely used for the synthesis of K-doped g-C3N4 photocatalysts, but the presence of organic byproducts in the resultant products is often overlooked in previous reports. Here, we demonstrated the universal presence of organic byproducts in K-doped g-C3N4 synthesized by typical thermal condensation of KOH/melamine, KOH/dicyandiamide, or KOH/urea. Taking the K-doped g-C3N4 photocatalysis for the degradation of dimethyl phthalate as an example, the negative influence of the organic byproducts on K-doped g-C3N4 photocatalysis was confirmed. Specifically, the organic byproducts can be gradually dissolved into the photocatalytic system of K-doped g-C3N4 as new and stable pollutants. Based on the solubility investigations on the byproducts in several solvents, hot-water washing was demonstrated to be a relatively effective approach to remove the organic byproducts from K-doped g-C3N4. The formation of organic byproducts during the synthesis of K-doped g-C3N4 could be ascribed to the fact that the presence of K salts in melamine, dicyandiamide, or urea molecules results in their insufficient thermal condensation into expected g-C3N4. selleckchem The present work provides objective information about the K-doped g-C3N4 photocatalysts and reminds researchers about the influence of the organic byproducts on the applications of the other impurity-doped g-C3N4 photocatalysts.

Facebook Pagelike Widget

Who’s Online

Profile picture of Krogh Blaabjerg
Profile picture of Hovgaard Estes
Profile picture of Dohn Osborne
Profile picture of Gunn Curran
Profile picture of Wise Klitgaard
Profile picture of Bossen Crowder
Profile picture of Keith Gould
Profile picture of Kusk Reddy
Profile picture of palermo2
Profile picture of Ulriksen Poulsen
Profile picture of Lund Mohr
Profile picture of MacLean Terrell
Profile picture of Wolf Mahoney
Profile picture of Lang Thuesen
Profile picture of Harris Williamson