-
Juul Foged posted an update 17 days ago
PBDEs are human-influenced chemicals utilized massively as flame retardants. They are environmentally persistent, not easily degraded, bioaccumulate in the biological tissue of organisms, and bio-magnify across the food web. They can travel over a long distance, with air and water being their possible transport media. They can be transferred to non-target organisms by inhalation, oral ingestion, breastfeeding, or dermal contact. These pollutants adsorb easily to solid matrices due to their lipophilicity and hydrophobicity; thus, sediments from rivers, lakes, estuaries, and ocean are becoming their major reservoirs aquatic environments. They have low acute toxicity, but the effects of interfering with the thyroid hormone metabolism in the endocrine system are long term. ISM001-055 order Many congeners of PBDEs are considered to pose a danger to humans and the aquatic environment. They have shown the possibility of causing many undesirable effects, together with neurologic, immunological, and reproductive disruptions and possible carcinogenicity in humans. PBDEs have been detected in small amounts in biological samples, including hair, human semen, blood, urine, and breastmilk, and environmental samples such as sediment, soil, sewage sludge, air, biota, fish, mussels, surface water, and wastewater. The congeners prevailing in environmental samples, with soil being the essential matrix, are BDE 47, 99, and 100. BDE 28, 47, 99, 100, 153, 154, and 183 are more frequently detected in human tissues, whereas in sediment and soil, BDE 100 and 183 predominate. Generally, BDE 153 and 154 appear very often across different matrices. However, BDE 209 seems not frequently determined, owing to its tendency to quickly breakdown into smaller congeners. This paper carried out an overview of PBDEs in the environmental, human, and biota niches with their characteristics, physicochemical properties, and fate in the environment, human exposure, and health effects.
In recent years, electronic waste has become the fastest growing waste stream globally with potential deleterious environmental and public health effects from its hazardous constituents. This review aims at providing an up-to-date information on the environmental and public health effects of e- wastes, and also identify research gaps that could form basis of further innovative studies on this important subject.
We carried out literature survey using several search engines. All available literature which reported directly on environmental contamination of air, soil, and water by e-wastes, and their effects on exposed plants, animals, and humans were used in other to generate an updated information.
High production volume coupled with indiscriminate disposal and informal recycling has made electronic waste (e-waste) to become a global public and environmental health issue. E-waste is made up of different hazardous substances such as heavy metals and persistent organic pollutants with the capacity to contas on e-waste environmental contamination and public health effects. The review has shown that e-waste contains constituents that caused adverse environmental effects and toxicity to the biota. However, there is an enormous data gap between exposure quantification and possible health effects. More studies are needed to elucidate and provide holistic information on environmental and public health dangers posed by e-waste constituents.Several conventional techniques for heavy metals decontamination for instance ion exchange, evaporation, precipitation and electroplating have been utilized in preceding years. Though these techniques have some drawbacks, adsorption using low-cost biosorbents is environmentally friendly. In this study, the potential of several natural and agricultural wastes as economical biosorbents for the reduction of Cr(VI) ions from polluted water has been reviewed. The application of adsorption models, as well as the impact of adsorption factors on heavy metals eradication, has been considered in this review. The study revealed that efficient reduction of Cr(VI) from water and wastewaters is highly dependent on the pH of the solution, shaking time, adsorbent type, initial concentration and temperature. The review of the relevant literature indicates that the maximum removal efficiency of Cr(VI) using the various low-cost adsorbents ranged from 50.0-100.0% with optimum pH and contact time ranging from 2.0-6.0 and 30.0-180.0 min, respectively at room temperature (25.0 °C). Furthermore, considering all the studies reviewed, the pseudo-second-kinetics and Langmuir isotherm are the dominant models that best described the Cr(VI) equilibrium data. The thermodynamic parameters suggested that the biosorption of Cr(VI) on the biosorbents was spontaneous, realistic and endothermic at the temperature range of 30.0-45.0 °C. It is found that the natural and agricultural wastes as cheap biosorbents are feasible replacements to commercial activated carbons for metal-contaminated water treatment. However, gaps have been identified to improve applicability, regeneration, reuse and safe discarding of the laden adsorbents, optimization and commercialization of suitable agricultural adsorbents.In recent decades, particulate matter (PM) concentrations in Tehran have exceeded the World Health Organization’s (WHO) guideline on most days. In this study, a search protocol was defined by identifying the keywords, to carry out a systematic review of the concentrations and composition of PM in Tehran’s ambient air. For this purpose, searches were done in Scopus, PubMed, and Web of Science in 2019. Among the founded articles (197 in Scopus, 61 in PubMed, and 153 in Web of Science). The results show that in Tehran, the annual average PM10 exceeded the WHO guidelines and for more than 50.0% of the days, the PM2.5 concentration was more than WHO 24-h guidance value. The PM concentration in Tehran has two seasonal peaks due to poorer dispersion and suspension from dry land, respectively. Tehran has two daily PM peaks due to traffic and changes in boundary-layer heights; one just after midnight and the other during morning rush hour. Indoor concentrations of PM10 and PM2.5 in Tehran were 10.6 and 21.8 times higher than the corresponding values in ambient air.