-
Hyllested Kristensen posted an update 24 days ago
If the tendency to discount rewards reflects individuals’ general level of impulsiveness, then the discounting of delayed and probabilistic rewards should be negatively correlated The less a person is able to wait for delayed rewards, the more they should take chances on receiving probabilistic rewards. It has been suggested that damage to the ventromedial prefrontal cortex (vMPFC) increases individuals’ impulsiveness, but both intertemporal choice and risky choice have only recently been assayed in the same patients with vMPFC damage. Here, we assess both delay and probability discounting in individuals with vMPFC damage (n = 8) or with medial temporal lobe (MTL) damage (n = 10), and in age- and education-matched controls (n = 30). On average, MTL-lesioned individuals discounted delayed rewards at normal rates but discounted probabilistic rewards more shallowly than controls. In contrast, vMPFC-lesioned individuals discounted delayed rewards more steeply but probabilistic rewards more shallowly than controls. These results suggest that vMPFC lesions affect the weighting of reward amount relative to delay and certainty in opposite ways. Moreover, whereas MTL-lesioned individuals and controls showed typical, nonsignificant correlations between the discounting of delayed and probabilistic rewards, vMPFC-lesioned individuals showed a significant negative correlation, as would be expected if vMPFC damage increases impulsiveness more in some patients than in others. Although these results are consistent with the hypothesis that vMPFC plays a role in impulsiveness, it is unclear how they could be explained by a single mechanism governing valuation of both delayed and probabilistic rewards.We performed in vitro selection experiments to identify DNA aptamers for the S1 subunit of the SARS-CoV-2 spike protein (S1 protein). Selleck EGFR inhibitor Using a pool of pre-structured random DNA sequences, we obtained over 100 candidate aptamers after 13 cycles of enrichment under progressively more stringent selection pressure. The top 10 sequences all exhibited strong binding to the S1 protein. Two aptamers, named MSA1 (Kd = 1.8 nM) and MSA5 (Kd = 2.7 nM), were assessed for binding to the heat-treated S1 protein, untreated S1 protein spiked into 50% human saliva and the trimeric spike protein of both the wildtype and the B.1.1.7 variant, demonstrating comparable affinities in all cases. MSA1 and MSA5 also recognized the pseudotyped lentivirus of SARS-CoV-2 with respective Kd values of 22.7 pM and 11.8 pM. Secondary structure prediction and sequence truncation experiments revealed that both MSA1 and MSA5 adopted a hairpin structure, which was the motif pre-designed into the original library. A colorimetric sandwich assay was developed using MSA1 as both the recognition element and detection element, which was capable of detecting the pseudotyped lentivirus in 50% saliva with a limit of detection of 400 fM, confirming the potential of these aptamers as diagnostic tools for COVID-19 detection.Newly synthesized mRNA is translated during its export through the nuclear pore complex, when its 5′-cap structure is still bound by the nuclear cap-binding complex (CBC), a heterodimer of cap-binding protein (CBP) 80 and CBP20. Despite its critical role in mRNA surveillance, the mechanism by which CBC-dependent translation (CT) is regulated remains unknown. Here, we demonstrate that the CT initiation factor (CTIF) is tethered in a translationally incompetent manner to the perinuclear region by the DEAD-box helicase 19B (DDX19B). DDX19B hands over CTIF to CBP80, which is associated with the 5′-cap of a newly exported mRNA. The resulting CBP80-CTIF complex then initiates CT in the perinuclear region. We also show that impeding the interaction between CTIF and DDX19B leads to uncontrolled CT throughout the cytosol, consequently dysregulating nonsense-mediated mRNA decay. Altogether, our data provide molecular evidence supporting the importance of tight control of local translation in the perinuclear region.The oxidative base damage, 8-oxo-7,8-dihydroguanine (8-oxoG) is a highly mutagenic lesion because replicative DNA polymerases insert adenine (A) opposite 8-oxoG. In mammalian cells, the removal of A incorporated across from 8-oxoG is mediated by the glycosylase MUTYH during base excision repair (BER). After A excision, MUTYH binds avidly to the abasic site and is thus product inhibited. We have previously reported that UV-DDB plays a non-canonical role in BER during the removal of 8-oxoG by 8-oxoG glycosylase, OGG1 and presented preliminary data that UV-DDB can also increase MUTYH activity. In this present study we examine the mechanism of how UV-DDB stimulates MUTYH. Bulk kinetic assays show that UV-DDB can stimulate the turnover rate of MUTYH excision of A across from 8-oxoG by 4-5-fold. Electrophoretic mobility shift assays and atomic force microscopy suggest transient complex formation between MUTYH and UV-DDB, which displaces MUTYH from abasic sites. Using single molecule fluorescence analysis of MUTYH bound to abasic sites, we show that UV-DDB interacts directly with MUTYH and increases the mobility and dissociation rate of MUTYH. UV-DDB decreases MUTYH half-life on abasic sites in DNA from 8800 to 590 seconds. Together these data suggest that UV-DDB facilitates productive turnover of MUTYH at abasic sites during 8-oxoGA repair.Mobile genetic elements have been harnessed for gene transfer for a wide variety of applications including generation of stable cell lines, recombinant protein production, creation of transgenic animals, and engineering cell and gene therapy products. The piggyBac transposon family includes transposase or transposase-like proteins from a variety of species including insect, bat and human. Recently, human piggyBac transposable element derived 5 (PGBD5) protein was reported to be able to transpose piggyBac transposons in human cells raising possible safety concerns for piggyBac-mediated gene transfer applications. We evaluated three piggyBac-like proteins across species including piggyBac (insect), piggyBat (bat) and PGBD5 (human) for their ability to mobilize piggyBac transposons in human cells. We observed a lack of cross-species transposition activity. piggyBac and piggyBat activity was restricted to their cognate transposons. PGBD5 was unable to mobilize piggyBac transposons based on excision, colony count and plasmid rescue analysis, and it was unable to bind piggyBac terminal repeats.