-
Coughlin Nicolaisen posted an update 6 days ago
These facts support the usefulness of the AuNp-based electrodes for the determination of MIT. The intensity of the anodic peak observed at + 0.45 V vs. Ag/AgCl was used as analytical signal for MIT determination. A linear relationship between anodic peak current and MIT concentration is observed in the range 8.7 to 36 mg L-1 using the transducer prepared by incorporating gold into the PDDA membrane by ion exchange and synthesising AuNp electrochemically. For this electrode, the limit of detection is 2.6 mg L-1 and the reproducibility, expressed as relative standard deviation (RSD), is lower than 7%. Graphical abstractSchematic representation of the preparation of gold nanoparticles (AuNp) and poly(diallyldimethylammonium) (PDDA)-based platforms and methylisothiazolinone (MIT) electrochemical response on these nanostructured platforms.The potential of carbon (C) sequestration through photosynthesis depends on the nature of different plant species. Tea (Camellia sinensis L.) is an evergreen perennial plant and cultivated over a wide region in the world, and its potential to sequestrate atmospheric carbon dioxide (CO2) in plant biomass is already evaluated. ABT-199 concentration However, proportions of assimilated CO2 which tea plant can sequestrate in their biomass and in soil are not evaluated before. In this experiment, ten (10) 6-month old tea plants of four different cultivars (TV1, TV20, S3A/3, and TV23) were transplanted in the field and CO2 assimilation flux of tea plants was periodically measured under in situ condition using close-chamber method at 15 days interval throughout the year. The cumulative CO2 assimilation flux of young tea plants varied within 31.82-249.22 g CO2 plant-1 year-1; however, it was estimated that tea bushes also emitted 5.2-70.8 g CO2 plant-1 year-1 due to aerobic respiration. After 1 year, tea plants were uprooted and the changes in their biomass were compared as the measure of their C-sequestration within the study duration. The weight gain in the whole plant biomass was proportional to the CO2 assimilation potential of tea cultivars. Overall, tea plants sequestrated 50.8% of the assimilated atmospheric CO2 in their biomass. The study revealed that tea bushes release organic C through the root exudates, the amount of which was equivalent to 5.9-8.6% of the assimilated CO2. Those secreted root exudates have potential to increase organic C up to 44-48 kg ha-1 year-1 in tea-growing soil.BACKGROUND Intrahepatic dosimetry is paramount to optimize radioembolization treatment accuracy using radioactive holmium-166 microspheres (166Ho). This requires a practical protocol that combines quantitative imaging of microsphere distribution with automated and robust delineation of the volumes of interest. To this end, we propose a dual isotope single photon emission computed tomography (SPECT) protocol based on 166Ho therapeutic microspheres and technetium-99 m (99mTc) stannous phytate, which accumulates in healthy liver tissue. This protocol may allow accurate and automatic estimation of tumor-absorbed dose and healthy liver-absorbed dose. The current study focuses on a Monte Carlo-based reconstruction framework that inherently corrects for scatter crosstalk between the 166Ho and 99mTc imaging. To demonstrate the feasibility of the method, it is evaluated with realistic phantom experiments and patient data. METHODS The Utrecht Monte Carlo System (UMCS) was extended to include detailed modeling of crosst clinical practice. Applicability of the proposed protocol was shown in a proof-of-concept case. CONCLUSION A novel 166Ho/99mTc dual-isotope protocol for automatic dosimetry compensates accurately for downscatter and allows for the addition of 99mTc without compromising 166Ho SPECT image quality.In present study, we discovered unusual solvent-mediated aggregation-enhanced emission (AEE) character of 11-mercaptoundecanoic acid capped gold nanoclusters (MUA-Au NCs). When aggregated in aqueous media, the MUA-Au NCs showed strong emission, which was weakened by adding ethanol. Interestingly, the suppressed emission was selectively enhanced in the presence of hydrogen sulfide (H2S) because H2S was absorbed onto Au NCs through the strong sulfur-gold bonding affinity. The hydrolyzed H2S, namely, HS-, made the Au NCs negatively charged, which aggregated again due to decreased solubility. The H2S-mediated fluorescence enhancement can be further amplified by introducing a hydrophilic thiolate (glutathione, GSH) onto the surface of Au NCs (GSH/MUA-Au NCs), which enabled sensitive determination of H2S. Under the optimized condition, a detection limit of 35 nM was achieved. The determination was not interfered by other anions such as F-, Cl-, Br-, I-, OAc-, N3-, NO3-, HCO3-, SCN-, SO32-, and SO42-. This excellent sensing performance allowed practical application of the GSH/MUA-Au NC-based sensing platform to accurate determination of H2S in human serum samples. Graphical abstractUnusual aggregation-enhanced emission character of 11-mercaptoundecanoic acid capped gold nanoclusters is discovered and has been applied for fluorometric hydrogen sulfide detection.Second generation ethanol has the prospect of becoming an important bioenergy alternative. The development of this technology is associated with the lignocellulosic materials’ use, with emphasis on agricultural and agroindustrial by-products from which fermentable sugar can be produced. The acid hydrolysis depolymerizes the hemicellulose releasing mainly xylose. Subsequently, the cellulose can be converted into glucose by enzymatic hydrolysis. However, the acid hydrolysis produces toxic compounds, such as furan derivatives, phenolics, and organic acids, which are harmful to fermentative microorganisms. This study investigated different acid concentrations in the sulfuric acid hydrolysis of sugarcane bagasse (1- 5% m/v) and the use of adsorbents with the prerogative to improve the acid hydrolysate (AH) quality for microbial ethanolic fermentation. Cell growth and fermentative yield of Saccharomyces cerevisiae (PE-2) and Scheffersomyces stipitis (NRRL Y-7124) were evaluated. AH was used as a source of pentoses (17.