Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Duran Rowland posted an update 25 days ago

    Herein, a thin film nanocomposite (TFN) membrane was prepared through deposition of a very thin mixed matrix layer of PEBAX®1657/chitosan-wrapped multiwalled carbon nanotubes (CWNTs) on an ultraporous polyethersulfone (PES) substrate. The eco-friendly CWNTs were synthesized via non-covalent functionalization of MWNTs by carbohydrate polymer chitosan. They were then incorporated into PEBAX®1657 matrix at different loadings (0, 0.1, 0.5, 1 and 2 wt%). The membranes were analyzed using SEM, AFM, FTIR, XRD and contact angel analyses. Furthermore, pure water fluxes through the membranes were investigated at 1, 2 and 3 bar and Malachite green separation properties of the membranes were evaluated at 2 bar. The results showed that the highest permeate flux (∼13.85 L/m2h) and rejection (∼98.7%) were obtained at 1 wt% and 0.1 wt% CWNT dosages, respectively. Additionally, the slight flux decline of the membranes during 5 h indicated the improved antifouling properties. In this study, the chemical, mechanical and barrier properties of films made from plasma-modified corn starch (MSF) were evaluated as a function of the amylose content (30, 50 and 70 %). SEM analysis revealed the presence of remnant starch granules (RSG) in all films, which promoted the ordering of helices as suggested by the FTIR results. Moreover, XPS analysis was used to identify the oxidation mechanism in all MSF as the atomic proportion of hydroxyl, carbonyl and carboxyl groups changed. Also, the increase of C-C proportions suggested crosslinking in MSF70. TGA analysis indicated low interaction between starch and the plasticizer as the tensile strength and elongation at break diminished in MSF50 and MSF70 due to the low plasticizing effect of glycerol, the oxidation phenomena and the depolymerization of starch chains. However, the crosslinking of MSF70 showed characteristics of rigid films with good hydrophobic performance. The cost of the cellulose derived from some raw materials was high. In addition, the dispersion of the cellulose with special shape and a low degree of substitution (DS) in water-soluble polymers was poor. To resolve this problem, cellulose was separated from waste disposable paper cups (WDPC) and then the carboxymethylcellulose (CMC) was synthesized by etherification. Under the optimized conditions (the etherification temperature of 70 ℃, the etherification time of 1.5 h, the monochloroacetic acid mass (C2H3ClO2) of 7 g), the DS of CMC was as high as 1.21. As-prepared CMC showed ribbon and rod-like shapes with a diameter of 25-50 μm. In addition, they exhibited an excellent thermal stability. Compared with other CMC, we could infer that as-prepared CMC in this paper will have potential applications in flexible composites and functional materials. In the present study, a facile one-pot hydrothermal method is introduced for preparation of hyaluronic acid-coated Fe3O4 nanoparticles (Fe3O4@HA NPs) for theranostic applications. In the proposed method, hyaluronic acid acts simultaneously as a biocompatible coating layer and as a targeting ligand for CD44 receptor overexpressed on the surface of breast cancer cells. The obtained product with narrow hydrodynamic size distribution exhibited a high colloidal stability at physiological pH for more than three months. Cytotoxicity measurements indicated a negligible toxicity of the prepared sample against L929 normal cells. Preferential targeting of Fe3O4@HA NPs to CD44-overexpressing cancer cells was studied by comparing the uptake of the prepared nanoparticles by MDA-MB-231 cancer cells (positive CD44 expression) and L929 normal cells (negative CD44 expression). Uptake of the Fe3O4@HA NPs by MDA-MB-231 cells was found to be 4-fold higher than the normal cells. Also, the in vitro analysis showed that, the uptake of Fe3O4@HA NPs by MDA-MB-231 breast cancer cells is significantly enhanced as compared to non-targeted dextran-coated Fe3O4 NPs. Moreover, the heat generation capability of the Fe3O4@HA NPs for magnetic hyperthermia application was studied by exposing the prepared nanoparticles to different safe alternating magnetic fields (f = 120 kHz, H = 8, 10, and 12 kA/m). The intrinsic loss power obtained for Fe3O4@HA NPs was about 3.5 nHm2/kg, which is about 25-fold larger than that of obtained for commercial available Fe3O4 nanoparticles for biomedical applications. Good colloidal stability, biocompatibility, high heating efficacy, and targeting specificity to CD44 receptor-overexpressing cancer cells could make the Fe3O4@HA NPs as a promising multifunctional platform for diagnosis and therapeutic applications. The present study aimed to unveil potential protective mechanisms of SEPS-4, a novel sulfated derivative of exopolysaccharide produced by Enterobacter cloacae Z0206, against H2O2-induced oxidative damage in murine macrophages based on proteomic approaches. SEPS-4 pre-treatment was found to be capable of alleviating H2O2-induced reduction of RAW264.7 cell viability. Two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were used to evaluate proteins with significant expression alterations in H2O2-challenged RAW264.7 cells following pre-incubation with SEPS-4. Here 12 up-regulated proteins and 12 down-regulated proteins were successfully identified. Bio-informatic analysis was applied for further mechanistic studies. GO annotation and KEGG pathway enrichment analyses demonstrated that differentially expressed proteins were mainly clustered in stress-related biological processes, including metabolic process, stimulus to response, cell growth and death. Peroxiredoxin-2 and Eef1g were core modules of protein-protein interaction network. Collectively, our data indicated that SEPS-4 may exert protective effects against H2O2-induced oxidative damage via the regulation of these functional proteins and related biological processes. The underlying mechanisms behind the genetics, structure and functionality relations in starches from various origins have not been fully understood. For better control of the genotypic background, rice starches from four chalky mutants and their parent were employed to investigate the above relations, and some interesting relations were revealed. GBSSI and SSIIIa were shown to affect the height of amylose in the debranched starch fraction (hAM) which reflects true amylose content (TAC), and then hAM was correlated with the AAC, RS, HD, COH, To, ΔHg, ΔHr, and R%. GBSSI also affected the average chain length (X)¯ of amylopectin, which was associated with the AAC, TAC, RS, HPV, HD, COH, ΔHg, ΔHr, and R%. The SSI, SSIIa and SSIIIa affected the amylose size (Rh,AM), which was correlated with the TAC, AAC, RS, HD, COH, To and Tp. Furthermore, both SSIIa and PUL affected the XAP2, and XAP2 was correlated with the To. Ipatasertib chemical structure

Facebook Pagelike Widget

Who’s Online

Profile picture of Albrechtsen Thomsen
Profile picture of Clements Bryant
Profile picture of Wagner Warren
Profile picture of Gustafsson Harrington
Profile picture of Cassidy Williamson
Profile picture of Foster Creech
Profile picture of palermo2
Profile picture of Sharma McKenna
Profile picture of Roche Sander
Profile picture of Rhodes Brown
Profile picture of Burt Greve
Profile picture of Birch Martinussen
Profile picture of Skovsgaard Crane